Large Sample Theory

Ferguson

Exercises, Section 8, The Sample Correlation Coefficient.

1. Use the notation $\mu_{ij} = \mathrm{E}(X - \mathrm{E}X)^i (Y - \mathrm{E}Y)^j$ to represent the ij^{th} central product moment. Note that $\mu_{20} = \sigma_x^2$, $C(XX, XX) = \mu_{40} - \sigma_x^4$, etc. Show that the limiting variance of the sample correlation coefficient is

$$\gamma^2 = \frac{\rho^2}{4} \left[\frac{\mu_{40}}{\sigma_x^4} + 2 \frac{\mu_{22}}{\sigma_x^2 \sigma_y^2} + \frac{\mu_{04}}{\sigma_y^4} \right] - \rho \left[\frac{\mu_{31}}{\sigma_x^3 \sigma_y} + \frac{\mu_{13}}{\sigma_x \sigma_y^3} \right] + \frac{\mu_{22}}{\sigma_x^2 \sigma_y^2}$$

- 2. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be a sample of size n from a distribution on the plane with finite fourth moments.
 - (a) Find the asymptotic distribution of $Z_n = \log(s_x^2/s_y^2)$.
 - (b) Find an asymptotically distribution-free confidence interval for $\theta = \log(\sigma_x^2/\sigma_y^2)$.
 - 3. Find the variance-stabilizing transformations for \overline{X}_n when sampling from
- (a) the gamma distribution, $\mathcal{G}(\alpha, 1)$, with probability density $f(x|\alpha) = x^{\alpha-1}e^{-x}/\Gamma(\alpha)$ on the interval $(0, \infty)$,
 - (b) the geometric distribution, $P_{\theta}(X=x) = (1-\theta)\theta^{x-1}$ for $x=1,2,\ldots$
- 4. (a) In testing the hypothesis H_0 : $\rho = 0$, we may use the test that rejects H_0 if |r| is too large. Find the asymptotic distribution of $\sqrt{n} r$ when $\rho = 0$ and note that it is not asymptotically distribution-free under H_0 (within the class of distribution with finite fourth moments).
- (b) In testing H_0 : X and Y are independent, show that the test that rejects H_0 if |r| is too large is asymptotically distribution-free under H_0 (within the class of distribution with finite fourth moments).