Solutions of Exercises 5.5.1 to 5.5.3.

5.5.1. (a) If $X \in \mathcal{C}(0,1)$, and $U = 2X/(1+X^2)$, then EU = 0 since $|U| \le 1$ and U has a symmetric distributin about 0. To evaluate EU^2 , we make the change of variable, $\theta = \arctan(x)$ with $dx = (1/\cos^2 \theta)d\theta$.

$$EU^{2} = \int_{-\infty}^{\infty} \left(\frac{2x}{1+x^{2}}\right)^{2} \frac{1}{\pi(1+x^{2})} dx = \frac{8}{\pi} \int_{0}^{\infty} \frac{x^{2}}{(1+x^{2})^{3}} dx$$
$$= \frac{8}{\pi} \int_{0}^{\pi/2} \sin^{2}\theta \cos^{4}\theta \frac{1}{\cos^{2}\theta} d\theta = \frac{8}{\pi} \int_{0}^{\pi/2} \sin^{2}\theta \cos^{2}\theta \, d\theta$$

Standard recursive methods for integrating $\cos^m \theta \sin^n \theta$ give

$$\int \sin^2 \theta \cos^2 \theta \, d\theta = \frac{1}{4} [\sin^3 \theta \cos \theta] + \frac{1}{8} [\theta - \sin \theta \cos \theta]$$

(as may be checked by differentiating). Hence, $Var(U) = EU^2 = (8/\pi)(\pi/16) = 1/2$.

(b) We reject H_0 if $\sum_{1}^{n} U_i > k$, where n = 100. The central limit theorem gives $\sum_{1}^{n} U_i$ as approximately normal with mean zero and variance n/2. Hence, $P(\sum_{1}^{n} U_i > k) = P(\sqrt{2/n} \sum_{1}^{n} U_i > \sqrt{2/n} k) = .05$, gives $\sqrt{2/n} k$ as approximately 1.645. Hence, $k = 1.645\sqrt{50} = 11.63$.

5.5.2. Part (a) is false unless α is restricted to be less than or equal to $1 - (1/2)^n$. Proof for n = 2: Look at the contours of the likelihood ratio,

$$\varphi(x_1, x_2) = \log(f(x_1, x_2|\theta) / f(x_1, x_2|0)) = |x_1| - |x_1 - \theta| + |x_2| - |x_2 - \theta|.$$

We are to show that the sets $\{\log(f(x_1, x_2|\theta)/f(x_1, x_2|0)) > k\}$ depend on θ . If $\alpha \ge 3/4$, there is a UMP test of size α whose acceptance region is any subset of the set $\{(x_1, x_2)|x_1 < 0, x_2 < 0\}$ of probability $1 - \alpha$ under H₀. However, if $\alpha < .75$, the region required to achieve size α depends on θ .

(b) The locally best test of (5.78) becomes: Reject H_0 if

$$\frac{\partial}{\partial \theta} \log f(\mathbf{x}|\theta)|_{\theta=0} = \frac{\partial}{\partial \theta} - \sum_{i=1}^{n} |x_i - \theta||_{\theta=0} = + \sum_{i=1}^{n} \operatorname{sgn}(x_i)$$

is too large. This is equivalent to rejecting H_0 if T is too large, where T is the number of positive X_i . This is the sign test. Under $H'_0: \theta = 0$, T has a binomial distribution, $\mathcal{B}(n, 1/2)$. For general θ , the distribution of T is $\mathcal{B}(n, p(\theta))$ where $p(\theta) = P_{\theta}(X > 0) = 1 - e^{-\theta}/2$ for $\theta \ge 0$ and $p(\theta) = e^{\theta}/2$ for $\theta < 0$, so the power function can easily be computed.

(c) The test $\phi(\mathbf{X}) = I(X_1 > 0)$ has power function $\beta_{\phi}(\theta) = P_{\theta}(X_1 > 0) = p(\theta)$. Hence, $\beta'_{\phi}(\theta) = e^{-|\theta|}/2$, and $\beta''_{\phi}(\theta)$ does not exist at $\theta = 0$. Thus the method for finding locally best unbiased tests does not work.

5.5.3. (a) If X_1, \ldots, X_n is a sample from the logistic distribution with location parameter θ , then $\log f(x_1, \ldots, x_n | \theta) = -\sum_{i=1}^n \log(2(1 + \cosh(x_i - \theta)))$, and

$$\left. \frac{\partial}{\partial \theta} \log f(x_1, \dots, x_n) \right|_{\theta=0} = \sum_{i=1}^n \frac{\sinh(x_i)}{1 + \cosh(x_i)}.$$

If we let $U = \sum_{i=1}^{n} \sinh(X_i)/(1 + \cosh(X_i))$, then since the distribution of U is continuous, we may omit the $\gamma(x)$ term in (5.78) and conclude that the test of H_0 vs. H_1 that rejects H_0 if and only if U > k, is a locally best test of its size for any k > 0. As an aid in choosing k to achieve a preassigned size α , we note that under H_0 the distribution of $\sinh(X_i)/(1 + \cosh(X_i))$ is uniform on the interval (-1, 1). This follows upon noticing that the distribution function of the logistic distribution, $\mathcal{L}(0, 1)$, may be written as $F(x) = (1/2)(1 + \sinh(x)/(1 + \cosh(x)))$ and using the fact that $F(X) \in \mathcal{U}(0, 1)$. Thus, U is the sum of nindependent $\mathcal{U}(-1, 1)$'s. (b) To find the locally best unbiased test, (5.88), we must compute

$$\frac{\partial^2}{\partial \theta^2} \log f(x_1, \dots, x_n) \bigg|_{\theta=0} = \sum_{i=1}^n \frac{-(1 + \cosh(x_i)) \cosh(x_i) + (\sinh(x_i))^2}{(1 + \cosh(x_i))^2}$$
$$= -\sum_{i=1}^n \frac{\cosh(x_i) + 1}{(1 + \cosh(x_i))^2} = -\sum_{i=1}^n \frac{1}{1 + \cosh(x_i)}.$$

The locally best unbiased test then rejects H_0 if $V > k_1 + k_2 U$, where

$$V = -\sum_{i=1}^{n} \frac{1}{1 + \cosh(x_i)} + \left(\sum_{i=1}^{n} \frac{\sinh(x_i)}{1 + \cosh(x_i)}\right)^2$$

and where k_1 and k_2 are chosen so that the test is unbiased and has a preassigned size. However, the test will be unbiased if k_2 is chosen equal to zero by the argument given at the bottom of page 239, because the distribution of V is symmetric about zero when H_0 is true. Thus, the test that rejects H_0 when $V > k_1$ is a locally best unbiased test of its size.