Solutions of Exercises 5.5.1 to 5.5.3.

5.5.1. (a) If $X \in \mathcal{C}(0,1)$, and $U=2 X /\left(1+X^{2}\right)$, then $\mathrm{E} U=0$ since $|U| \leq 1$ and U has a symmetric distributin about 0 . To evaluate $\mathrm{E} U^{2}$, we make the change of variable, $\theta=\arctan (x)$ with $d x=\left(1 / \cos ^{2} \theta\right) d \theta$.

$$
\begin{aligned}
\mathrm{E} U^{2} & =\int_{-\infty}^{\infty}\left(\frac{2 x}{1+x^{2}}\right)^{2} \frac{1}{\pi\left(1+x^{2}\right)} d x=\frac{8}{\pi} \int_{0}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{3}} d x \\
& =\frac{8}{\pi} \int_{0}^{\pi / 2} \sin ^{2} \theta \cos ^{4} \theta \frac{1}{\cos ^{2} \theta} d \theta=\frac{8}{\pi} \int_{0}^{\pi / 2} \sin ^{2} \theta \cos ^{2} \theta d \theta
\end{aligned}
$$

Standard recursive methods for integrating $\cos ^{m} \theta \sin ^{n} \theta$ give

$$
\int \sin ^{2} \theta \cos ^{2} \theta d \theta=\frac{1}{4}\left[\sin ^{3} \theta \cos \theta\right]+\frac{1}{8}[\theta-\sin \theta \cos \theta]
$$

(as may be checked by differentiating). Hence, $\operatorname{Var}(U)=\mathrm{E} U^{2}=(8 / \pi)(\pi / 16)=1 / 2$.
(b) We reject H_{0} if $\sum_{1}^{n} U_{i}>k$, where $n=100$. The central limit theorem gives $\sum_{1}^{n} U_{i}$ as approximately normal with mean zero and variance $n / 2$. Hence, $\mathrm{P}\left(\sum_{1}^{n} U_{i}>k\right)=\mathrm{P}\left(\sqrt{2 / n} \sum_{1}^{n} U_{i}>\sqrt{2 / n} k\right)=.05$, gives $\sqrt{2 / n} k$ as approximately 1.645 . Hence, $k=1.645 \sqrt{50}=11.63$.
5.5.2. Part (a) is false unless α is restricted to be less than or equal to $1-(1 / 2)^{n}$. Proof for $n=2$: Look at the contours of the likelihood ratio,

$$
\varphi\left(x_{1}, x_{2}\right)=\log \left(f\left(x_{1}, x_{2} \mid \theta\right) / f\left(x_{1}, x_{2} \mid 0\right)\right)=\left|x_{1}\right|-\left|x_{1}-\theta\right|+\left|x_{2}\right|-\left|x_{2}-\theta\right|
$$

We are to show that the sets $\left\{\log \left(f\left(x_{1}, x_{2} \mid \theta\right) / f\left(x_{1}, x_{2} \mid 0\right)\right)>k\right\}$ depend on θ. If $\alpha \geq 3 / 4$, there is a UMP test of size α whose acceptance region is any subset of the set $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<0, x_{2}<0\right\}$ of probability $1-\alpha$ under H_{0}. However, if $\alpha<.75$, the region required to achieve size α depends on θ.
(b) The locally best test of (5.78) becomes: Reject H_{0} if

$$
\left.\left.\frac{\partial}{\partial \theta} \log f(\mathbf{x} \mid \theta)\right|_{\theta=0}=\frac{\partial}{\partial \theta}-\sum_{i=1}^{n} \right\rvert\, x_{i}-\theta \|_{\theta=0}=+\sum_{i=1}^{n} \operatorname{sgn}\left(x_{i}\right)
$$

is too large. This is equivalent to rejecting H_{0} if T is too large, where T is the number of positive X_{i}. This is the sign test. Under $H_{0}^{\prime}: \theta=0, T$ has a binomial distribution, $\mathcal{B}(n, 1 / 2)$. For general θ, the distribution of T is $\mathcal{B}(n, p(\theta))$ where $p(\theta)=\mathrm{P}_{\theta}(X>0)=1-e^{-\theta} / 2$ for $\theta \geq 0$ and $p(\theta)=e^{\theta} / 2$ for $\theta<0$, so the power function can easily be computed.
(c) The test $\phi(\mathbf{X})=\mathrm{I}\left(X_{1}>0\right)$ has power function $\beta_{\phi}(\theta)=\mathrm{P}_{\theta}\left(X_{1}>0\right)=p(\theta)$. Hence, $\beta_{\phi}^{\prime}(\theta)=e^{-|\theta|} / 2$, and $\beta_{\phi}^{\prime \prime}(\theta)$ does not exist at $\theta=0$. Thus the method for finding locally best unbiased tests does not work.
5.5.3. (a) If X_{1}, \ldots, X_{n} is a sample from the logistic distribution with location parameter θ, then $\log f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=-\sum_{i=1}^{n} \log \left(2\left(1+\cosh \left(x_{i}-\theta\right)\right)\right.$, and

$$
\left.\frac{\partial}{\partial \theta} \log f\left(x_{1}, \ldots, x_{n}\right)\right|_{\theta=0}=\sum_{i=1}^{n} \frac{\sinh \left(x_{i}\right)}{1+\cosh \left(x_{i}\right)}
$$

If we let $U=\sum_{i=1}^{n} \sinh \left(X_{i}\right) /\left(1+\cosh \left(X_{i}\right)\right)$, then since the distribution of U is continuous, we may omit the $\gamma(x)$ term in (5.78) and conclude that the test of H_{0} vs. H_{1} that rejects H_{0} if and only if $U>k$, is a locally best test of its size for any $k>0$. As an aid in choosing k to achieve a preassigned size α, we note that under H_{0} the distribution of $\sinh \left(X_{i}\right) /\left(1+\cosh \left(X_{i}\right)\right.$ is uniform on the interval $(-1,1)$. This follows upon noticing that the distribution function of the logistic distribution, $\mathcal{L}(0,1)$, may be written as $F(x)=(1 / 2)(1+\sinh (x) /(1+\cosh (x)))$ and using the fact that $F(X) \in \mathcal{U}(0,1)$. Thus, U is the sum of n independent $\mathcal{U}(-1,1)$'s.
(b) To find the locally best unbiased test, (5.88), we must compute

$$
\begin{aligned}
\left.\frac{\partial^{2}}{\partial \theta^{2}} \log f\left(x_{1}, \ldots, x_{n}\right)\right|_{\theta=0} & =\sum_{i=1}^{n} \frac{-\left(1+\cosh \left(x_{i}\right)\right) \cosh \left(x_{i}\right)+\left(\sinh \left(x_{i}\right)\right)^{2}}{\left(1+\cosh \left(x_{i}\right)\right)^{2}} \\
& =-\sum_{i=1}^{n} \frac{\cosh \left(x_{i}\right)+1}{\left(1+\cosh \left(x_{i}\right)\right)^{2}}=-\sum_{i=1}^{n} \frac{1}{1+\cosh \left(x_{i}\right)}
\end{aligned}
$$

The locally best unbiased test then rejects H_{0} if $V>k_{1}+k_{2} U$, where

$$
V=-\sum_{i=1}^{n} \frac{1}{1+\cosh \left(x_{i}\right)}+\left(\sum_{i=1}^{n} \frac{\sinh \left(x_{i}\right)}{1+\cosh \left(x_{i}\right)}\right)^{2}
$$

and where k_{1} and k_{2} are chosen so that the test is unbiased and has a preassigned size. However, the test will be unbiased if k_{2} is chosen equal to zero by the argument given at the bottom of page 239 , because the distribution of V is symmetric about zero when H_{0} is true. Thus, the test that rejects H_{0} when $V>k_{1}$ is a locally best unbiased test of its size.

