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Abstract. Games with Finite Resources as defined by Gale (1957) are two-person zero-
sum N -stage games in which each player has N resources and may use each resource once
and only once in the N stages. Gale’s theorem on these games is generalized in several
directions. First the payoff is allowed to be any symmetric function of the stage payoffs.
Second, the players are allowed some latitude in choosing which game is being played.
Applications are given to some open questions in the area of Inspection Games. Finally
the payoff is allowed to be random, thus incorporating a result of Ross (1972) on Goofspiel.
Application is made to a game-theoretic version of the Generalized House Selling Problem.
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1. A Theorem of Gale

Games with Finite Resources are two-person zero-sum multistage games defined by David
Gale (1957) to have the following structure.

Player I’s resource set is A = {1, 2, . . . , N}. Player II’s resource set is B =
{1, 2, . . . , N}. Associated with these resources is an N ×N payoff matrix M = (M(i, j)).
The game is played in N stages and each player is allowed to use each resource once and
only once during these N stages.

At stage 1, the players simultaneously choose a1 ∈ A and b1 ∈ B and there is an
immediate payoff of M(a1 , b1).

At stage k, the players simultaneously choose ak ∈ A − {a1, . . . , ak−1} and bk ∈
B −{b1, . . . , bk−1} and there is a payoff of M(ak , bk). It is assumed that the players know
which resources have been used up to stage k.

At stage N , the players use their remaining resources aN and bN and the payoff is
M(aN , bN ). The total payoff is thus

∑N
1 M(ai, bi).

1



Example 1. Baby Goofspiel. Player I is given the 13 hearts and Player II the 13
diamonds of an ordinary deck of cards. They simultaneously play a card from their hands
and the higher card (Ace is low) wins the value of the lower card (Ace counts 1, Jack
counts 11, Queen 12 and King 13). Play continues until all cards have been played (N=13
rounds). The matrix is

M =




A 2 3 Q K

A 0 −1 −1 . . . −1 −1
2 1 0 −2 . . . −2 −2
3 1 2 0 −3 −3

...
. . .

...
Q 1 2 3 . . . 0 −12
K 1 2 3 . . . 12 0




This game of finite resources is symmetric, so the value is 0. After the first move, the
game may no longer be symmetric and it seems as if the optimal strategies may be quite
complex. However, Gale’s remarkable result for arbitrary Games of Finite Resources is the
following.

Theorem 1. (Gale (1957)) The value of the Game With Finite Resources is

V =
1
N

N∑
i=1

N∑
j=1

M(i, j).

An optimal strategy for Player I is to choose a permutation (a1, . . . , aN ) of {1, 2, . . . , N}
at random with probability 1/N ! each, and to use ak at stage k. Similarly for Player II.

A remarkable feature of this result is that the players’ optimal strategies do not use
any of the information acquired along the way. Indeed, we could alter the rules of the game
so that Player II is not told the pure strategy choices of Player I as the game progresses.
The lack of information does not hurt him. In addition, this strategy does not depend on
the payoff matrix, M . It could be that the entries to the matrix are chosen at random
according to some distribution known to the players, but that only Player I is informed of
the matrix that was chosen. The seeming advantage Player I gets from this information is
of no use to him.

We shall refer to the optimal strategies found in Theorem 1 as Gale strategies.

Gale’s result is somewhat more general than this. The elements of A and B are
allowed to be elements of linear spaces and the payoff to be a bilinear functional of the
chosen a and b. Also both players are allowed to select from a collection of N -element sets,
provided that the sum of the elements in each set is the same constant. Gale’s general
result is extended in Theorem 4 below.

In this paper, Gale’s Theorem is generalized in three directions. In Section 2, we note
that Gale’s result remains true if the final payoff is allowed to be any symmetric function
of the stage payoffs. This allows treatment of problems where the player who wins the
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larger total amount is declared the winner of the game. In Section 3, we allow the players
during pregame play to jointly choose the matrix to be used in the game. We also give
some leeway in selecting the matrix as play progresses. This will allow us to make some
far-reaching generalizations of inspection games. In Section 4, we allow the payoffs to
be influenced by a sequence of random variables. This generalization contains a result
of Sheldon Ross (1971) on hidden card goofspiel. Finally we examine the implication of
these ideas on the sequential assignment problem of Derman, Lieberman and Ross (1972),
sometimes called the generalized house selling problem.

We conclude this section with another example showing that this simple form of
Gale’s Theorem can already be used to extend certain results on the inspection game.
This possibility was suggested in Ferguson and Melolidakis (1998).

Example 2. An Inspection Game. The inspector has k ≤ N agents of differing
abilities. The smuggler has l ≤ N shipments of differing values that he must ship within
the next N days. The inspector may use each agent only once and at most one agent per
day. The inspector decides sequentially which agent to use on which day. The smuggler
decides sequentially which contraband to smuggle on which day. If agent i is inspecting
on the day that contraband j is being sent, the payoff to the inspector is mij , i = 1, . . . , k,
j = 1, . . . , l. If the smuggler sends contraband j on a day the inspector is not inspecting,
the payoff to the smuggler is sj . On days the smuggler does nothing, the payoff is zero. The
inspector learns after the fact of any successful smuggling and of the type of contraband
smuggled. However, the smuggler only learns of those inspectors used on the days he tries
to smuggle.

We may set this problem up as a game of finite resources as follows. Let the first
k elements of A = {1, 2, . . . , N} denote the agents and the last N − k elements denote
do-nothings. Similarly, let the first l elements of B = {1, 2, . . . , N} denote the different
contrabands and the last N − l elements denote do-nothings. The associated matrix M is

M(i, j) =

{
mij if 1 ≤ i ≤ k and 1 ≤ j ≤ l
−sj if k < i ≤ N and 1 ≤ j ≤ l
0 if l < j ≤ N

The value of the game is V = (1/N)[
∑k

i=1

∑l
j=1 mij − (N − k)

∑l
j=1 sj ] and the Gale

strategies are optimal. This result for l = 1 and all mij equal is one of the problems solved
by Dresher (1962) (see Section 8). Later, Thomas and Nisgav (1976) independently found
the same result. The case of arbitrary l and all mij equal and all sj equal is in Sakaguchi
(1977). The case of arbitrary l and mij = 1 for i ≤ h, mij = −1 for h < i ≤ k, and sj = 0
is in Nakai (1980).

2. Allowing a more general payoff

As a first generalization of games with finite resources, we allow the terminal payoff
to be a more general function of the stage payoffs rather than just the sum. Sup-
pose the final payoff of the game is some function, g(M(a1, b1), . . . ,M(aN , bN )), where
M(a1 , b1), . . . ,M(aN , bN ) are the stage payoffs. The following theorem states that Gale’s
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Theorem remains true if the function g(x1, . . . , xN ) is symmetric in its arguments,
i.e. g(x1, . . . , xN ) = g(xπ(1), . . . , xπ(N)) for all π ∈ ΠN , the set of all permutations
(π(1), . . . , π(N)) of (1, . . . , N). An example given in Gale’s paper shows that this re-
sult is not necessarily true for arbitrary functions, g. The proof of Theorem 2 follows
Gale’s proof closely with some simplification.

Theorem 2. The optimal strategies given in Theorem 1 are still optimal if the final payoff
is a symmetric function, g, of the stage payoffs, but the value is now

V =
1
N !

∑
π∈ΠN

g(M(1, π(1)), . . . ,M(N,π(N))).

Proof. We show that if Player II, say, uses a Gale strategy, then all choices of the first
move by Player I lead to the same expected payoff. We show this by induction on N . It
is trivially true for N = 1. Suppose it is true for games of N − 1 stages. If Player I uses
a1 and Player II uses b1 on the first stage of the N -stage game, the induction hypothesis
implies that the average payoff is

V (a1, b1) =
1

(N − 1)!

∑
π∈ΠN (a1,b1)

g(M(1, π(1)), . . . ,M(a1 , b1), . . . ,M(N,π(N))),

where ΠN (a1, b1) = {π ∈ ΠN : π(a1) = b1}. This uses the assumed symmetry of g.
If Player II chooses b1 from {1, . . . , N} at random with probability 1/N each, then the
average payoff to Player I is

V (a1) =
1
N

N∑
j=1

V (a1, j)

=
1
N

N∑
j=1

1
(N − 1)!

∑
π∈ΠN (a1,j)

g(M(1, π(1)), . . . ,M(a1 , j), . . . ,M(N,π(N)))

=
1
N !

∑
π∈ΠN

g(M(1, π(1)), . . . ,M(N,π(N))) = V.

This completes the induction.

In Example 1 above, we might say the player wins the game if he has the most points
at the end of the game. The final payoff is the sign of the sum of the stage payoffs,
g(x1, . . . , xN ) = sgn(x1+ · · ·+xN ), and so is a symmetric function of the stage payoffs. Or
in Example 2, the inspector might win if he catches the spy at least once. More interesting
would be to let the payoff be the standard deviation of the stage payoffs, with Player I
trying to achieve a wide spread of the payoffs, and Player II trying to achieve a level payoff.

Example 3. Divide and Conquer, by Claude Soucie. This game is described by Sid
Sackson (1994) p.135-136. Player I is given five cards drawn at random from a deck of ten
cards consisting of the 2, 3, . . . , 10, and Q. The remaining five cards are given to player II.
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The game is played in two rounds of five stages each. At each stage of the first round,
the players simultaneously choose a card from their hand and the winner for that stage
is determined by the rules: The higher card wins, unless the lower card is one unit below
the higher card, or unless the value of the lower card divides the value of the higher card
(Q is considered 12), in which case the lower card wins. The cards played at each stage
are set aside and when the five stages are finished, the two players exchange their initial
hands and play five more stages with the same rules. The winner is the player who has
won at least six stages in the two rounds combined.

This is slightly more complicated than the other examples because Theorem 2 must
be applied twice. First, consider the second round. Let x denote the number of wins
Player I has achieved upon entering the second round. Then conditional on x, the total
payoff, being a function of the sum of the remaining stage payoffs, is a symmetric function
of those payoffs. So Theorem 2 applies to the second round, and the optimal strategies are
Gale strategies, guaranteeing some v(x) for each x. Therefore, in the first round, it is as
if the two players play a finite resource game, the evaluation function being v(x), which is
again a function of the sum of the first round payoffs and hence symmetric. This shows
that in the first round the two players will also play Gale strategies. Since their optimal
strategies are independent of the particular M initially chosen, this chance move is of no
consequence.

3. Allowing the payoff matrix to be chosen jointly by the players

Suppose that instead of a single matrixM , a set of N×N matrices, {Ms,t} for s = 1, . . . , S
and t = 1, . . . , T , is given. Let Γ be the game in which Player I chooses s, and Player II
chooses t simultaneously, and then the finite resource game with matrix Mst is played à
la Gale. We have the following rather obvious theorem.

Theorem 3. The game Γ has value V = Val(M ∗), where M∗ is the S × T matrix

M∗ =


 1

N

N∑
i=1

N∑
j=1

Mst(i, j)




and Val denotes the value operator applied to matrices. An optimal strategy for Player I
is to choose s according to any optimal strategy for the matrix game M ∗ and then choose
a permutation of (1, 2, . . . , N) with probability 1/N ! each. Similarly for player II.

Once s and t have been chosen, the players’ optimal strategies are independent of the
information received and of the matrix selected and of its values. This is also the solution
if one of the players is not informed of which game is being played and his opponent is
informed. However, it is assumed that once s and t have been chosen, they may not be
changed. Certain applications to inspection games require that we allow the players to
select the matrix as the game proceeds. For this we need a different approach.

Let A and B be nonempty (possibly infinite) sets representing the possible actions of
the players. Let S and T denote (possibly infinite) sets of permissible sequences of actions
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for the N -stage game. We take S and T to be arbitrary nonempty sets of N -tuples of
elements of A and B respectively, satisfying the sole condition that they are closed under
permutations. That is, we assume

s = (a1, . . . , aN ) ∈ S implies (aπ1 , . . . , aπN ) ∈ S for all π ∈ ΠN

t = (b1, . . . , bN ) ∈ T implies (bπ1 , . . . , bπN ) ∈ T for all π ∈ ΠN .

The N -stage game is played as follows. Given are A, B, S, T and a real valued
function u on A × B. At the first stage, Player I chooses some a1 ∈ A that is the first
element of some s ∈ S. Simultaneously, Player II chooses some b1 ∈ B that is the first
member of some t ∈ T . Then a1 and b1 are announced to the players, and Player I receives
an amount u(a1, b1) from Player II, where u is some known real function defined on A×B.
Then play proceeds to the next stage where Players I and II simultaneously choose a2 ∈ A
and b2 ∈ B such that (a1, a2) and (b1, b2) are the first two elements of some s ∈ S and
t ∈ T . This continues for all N stages, the final payoff being the sum of the stage payoffs.

For a given element s ∈ S, we let s∗ denote the Gale strategy that selects an equiprob-
able random permutation of the elements of s. Similarly for t∗. The following theorem
states that if two given strategies satisfy a strong saddle-point property, they will be op-
timal.

Theorem 4. If there exists ŝ = (â1, . . . , âN ) ∈ S and t̂ = (b̂1, . . . , b̂N ) ∈ T such that

max
s∈S

N∑
i=1

u(ai, b̂j) =
N∑

i=1

u(âi, b̂j) for all j = 1, . . . , N (1)

and

min
t∈T

N∑
j=1

u(âi, bj) =
N∑

j=1

u(âi, b̂j) for all i = 1, . . . , N, (2)

then the strategies ŝ∗ and t̂∗ are optimal, and the value is

V =
1
N

N∑
i=1

N∑
j=1

u(âi, b̂j). (3)

Proof. We will show that if Player II uses t̂∗, then Player I can achieve no more than V .
The theorem will then follow since by symmetry Player I would be able to achieve at least
V using ŝ∗.

Suppose then that Player II uses t̂∗. We may assume without loss of generality that
all b̂j are distinct, since we could enlarge B with dummy equivalents to the duplicated b̂j

and extend the definition of u appropriately. We allow Player I considerably more leeway
in choosing strategies. We allow him to choose a different strategy for each b̂j . That is,
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we pretend that Player I may hire N brokers, j = 1, 2, . . . , N , each of which may use a
different strategy, where the payoff broker j receives by choosing a is

uj(a, b) =
{

u(a, b) if b = b̂j

0 otherwise.
(4)

Player I receives the sum of the returns from all the brokers. Clearly this cannot hurt
Player I because all the brokers could use the same strategy and this would give him what
he could achieve on his own. We show by induction on N , that the largest expected return
broker j can achieve against the strategy t̂∗ of Player II is

Vj = max
s∈S

1
N

N∑
i=1

u(ai, b̂j). (5)

The result is obviously true for N = 1. Suppose it is true for N − 1. Suppose broker j
uses an arbitrary a1 on the first stage. With probability 1/N , Player II uses b̂j and the
payoff is u(a1, b̂j). With probability (N − 1)/N , Player II uses one of the other elements
of t̂ and by the induction hypothesis the expected payoff is at most

1
N − 1

max
s∈S(a1)

N∑
i=2

u(ai, b̂j) (6)

where S(a1) is the set of permissible sequences of actions remaining to Player I after he
uses a1 at the first stage,

S(a1) := {s = (a2, . . . , aN ) : (a1, a2, . . . , aN ) ∈ S}. (7)

The total expected payoff to broker j, using a1 on the first round, is at most

1
N

u(a1, b̂j) +
N − 1

N

1
N − 1

max
s∈S(a1)

N∑
i=2

u(ai, b̂j) =
1
N
[u(a1, b̂j) + max

s∈S(a1)

N∑
i=2

u(ai, b̂j)]

≤ 1
N
max
s∈S

N∑
i=1

u(ai, b̂j) = Vj ,

completing the induction. Therefore, the total payoff to Player I is bounded above by the
sum

N∑
j=1

Vj =
N∑

j=1

1
N
max
s∈S

N∑
i=1

u(ai, b̂j).

This is equal to V from condition (1).

An example showing the usefulness of allowing A and S to be infinite sets is given
in Gale’s paper. Gale takes S and T to N -tuples of m-dimensional and n-dimensional
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vectors respectively, s = (a1, . . . ,aN ) and t = (b1, . . . , bN ), closed under permutations,
and satisfying

N∑
i=1

ai = a, and
N∑

i=1

bi = b,

where a and b are fixed m- and n-dimensional vectors. The payoff at stage i when the
players use ai and bi is u(ai, bi) = a′

iMbi where M is a fixed m by n matrix. The overall
payoff for given s and t is the sum of the stage payoffs,

N∑
i=1

a′
iMbi.

The conclusion is that the value is a′Mb/N and the Gale strategies are optimal.
Theorem 4 may be considered as a generalization of this result. One has only to

check that conditions (1) and (2) are satisfied. But
∑N

i=1 a′
iMbj = a′Mbj . so that the

maximum is independent of s ∈ S and condition (1) is satisfied. Similarly for condition
(2).

Example 4. The Many-Agent Inspection Game. Consider again the N -stage inspec-
tion game. Suppose Player I has Q types of agents, with qi inspection agents of type i,
i = 1, . . . , Q. The agents of type i are allowed at most ki inspections total, which may
be allocated in any manner I wishes during the next N days (but with no more than qi

inspections of type i on a single day). Without loss of generality we assume that ki ≤ Nqi.
We also assume that a total of no more than c agents may be used on a single day.

Player II has 1 ≤  < N identical contraband which must be delivered during the next
N days. II is not allowed to deliver more than 1 contraband per day.

The first stage is played in the following way: Player I chooses the number and
types of agents to be dispatched. Hence, I chooses a1 := (a11, . . . , a1Q), with 0 ≤ a1i ≤
min{qi, ki}, i = 1, . . . , Q and

∑Q
i=1 a1i ≤ c. Simultaneously, II chooses b1 = 0 or b1 = 1

as the number of contraband sent. The payoff to I for the first stage is given by u(a1, b1),
where u is a function defined on the possible team and contraband allocations. Then, each
player is informed of the other player’s actions and the game moves to the next stage where
the whole process is repeated. The total payoff is the sum of the stage payoffs.

Let us denote by S and T the sets of permissible sequences of actions of Players I and
II in the generalized inspection game we are discussing, i.e.

S := {s = (a1, . . . ,aN ) : aν = (aν1 , . . . , aνQ), 0 ≤ aνi ≤ qi,

Q∑
j=1

aνj ≤ c,
N∑

ν=1

aνi = ki, ν = 1, . . . , N, i = 1, . . . , Q}

and

T := {t = (b1, . . . , bN ) : bi ∈ {0, 1}, i = 1, . . . , N,
N∑

i=1

bi =  }.
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Both S and T are closed under permutations.
Note that T consists of one element and its permutations. This implies that condition

(2) of Theorem 4 is satisfied. If we make the assumption that there is no payoff in those
stages where Player II does not act, i.e.

u(a, 0) = 0 for all a, (8)

then condition (1) is also satisfied with â achieving the maximum in
∑N

1 u(ai, 1). The
value is

V =
 

N
max
s∈S

N∑
i=1

u(ai, 1), (9)

and there are optimal Gale strategies. A counterexample to this result when condition (8)
is not satisfied is given after the discussion.

This result extends and simplifies certain results in the inspection game literature.
The game with  = 1, Q = 1, q1 = 1, k1 = k and c = 1 is the game, discussed in Example
2 and solved by Dresher (1962) using recursive techniques. This game was extended by
Thomas and Nisgav (1976) to q1 = 2, c = 2. The inspector may use a total of k inspections,
but if the two agents inspect on the same day, there may be a better result (or a higher
probability of catching the smuggler). Thomas and Nisgav did not give a complete solution
to this problem but instead showed how to use a linear program to solve it. They also
proposed looking at the problem with Q = 2, q1 = q2 = 1 and c = 2. The agent of type 1
can be used at most k1 times and the agent of type 2 can be used at most k2 times.

Baston and Bostock (1991) consider this second (more difficult) problem and derive a
closed form solution using recursive techniques. Garnaev (1994) succeeds in finding closed
form solutions to the problem of three types of agents, Q = 3, q1 = q2 = q3 = 1. These
problems are indeed difficult to solve if the multistage game approach is used to solve
them.

It may be checked that (9) provides the same answer as that found in the particular
cases solved in the inspection game literature. As an example, suppose  = 1, Q = 2, and
q1 = q2 = 1, c = 2, and let us use as notation for the payoff, u((1, 1), 1) = p, u((1, 0), 1) =
p1, u((0, 1), 1) = p2, and 0 elsewhere. For a particular s ∈ S, let c0 be the number of (1, 1)
appearing, c1 the number of (1, 0) appearing, and c2 the number of (0, 1) appearing. From
(9), the value will be M/N , whereM := max{c0p+c1p1+c2p2 : c0+c1 = k1, c0+c2 = k2}.
Assuming k1 ≤ k2 ≤ N and rescaling, we get the main theorem (Theorem 2.6) of Baston
and Bostock (1991).

Using Theorem 4, we may also treat problems in which Player II has several distinct
contraband that must be sent. For example, there are N possibly distinct contraband that
must be sent, but that at most one contraband can be sent per day, so that condition (2)
is still satisfied. Also suppose that the payoff for sending contraband j when action a is
being used by the inspector has the form

u(a, j) = cjφ(a)
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for some arbitrary function φ and some constants cj ≥ 0. The worthless contraband with
cj = 0 correspond to the “do-nothing” actions. Then condition (1) is also satisfied because

max
s∈S

N∑
i=1

u(ai, j) = cj max
s∈S

N∑
i=1

φ(ai)

so that the maximizing s may be chosen independent of j.

Counterexample when u(a, 0) 
≡ 0. Suppose N = 3, Q = 1, q1 = k1 = c = 2, and
 = 1. Player I has just two permissible sequences, s1 = (0, 1, 1) and s2 = (0, 0, 2) and
their permutations. Suppose

u(0, 0) = 0 u(1, 0) = 0 u(2, 0) = −1
u(0, 1) = 0 u(1, 1) = 0 u(2, 1) = 2.

Then both Gale strategies, s∗
1 and s∗

2, give an average payoff of zero against t∗. However,
the strategy: Play a1 = 0 first. If Player II uses 0, then continue with a2 = 0 and a3 = 2. If
Player II uses 1, then continue with a2 = 1 and a3 = 1. Against t∗, this gives an expected
payoff of 1/3. (If a counterexample with u non-decreasing in its first argument is required,
change u(1, 0) = 1 and u(2, 0) = 1.)

4. Allowing Random Payoffs.

We may allow the stage payoffs to be influenced by a sequence of random variables. The
results depend on whether the random variables are observed before or after the players
make their choices at each stage.

Example 5. Goofspiel. As in Baby Goofspiel, Player I is given the 13 hearts and
Player II the 13 diamonds from a deck of cards. In the game of (adult) Goofspiel, the 13
spades are shuffled and placed in the center of the table. In the first round, the top card
of the spade pile is turned over for the players to see. Then they each choose a card from
their hands and simultaneously play it on the table. The player who has played the higher
card wins the value of the spade card showing. If the players have chosen the same card,
there is no payoff. Then all three cards are removed from the game and play proceeds to
the next round. Play ends after 13 rounds.

Goofspiel, also called GOPS (game of pure strategy), is described in Luce and Raiffa
(1957) and studied by Ross (1971). It is indeed a difficult game to analyze. No one
knows what the optimal strategy is for the first round. However, in a related game called
Hidden Card Goofspiel, the card on top of the spade pile is turned over only after the
players make their choices. For this game, Ross shows there is a very Gale-like solution, in
which the players have optimal strategies that choose cards from the hands equally likely,
ignoring information received along the way. The solution of this game does not seem to
be derivable directly from Gale’s Theorem. So it is of interest to discover a general result
that will contain Gale’s Theorem and the result of Ross on Hidden Card Goofspiel.
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We present two theorems. In the first, the random variables are observed before the
players make their choices. The set-up is as for Gale’s Theorem. Players I and II each
have N resources to be used one at a time in the N stages. There is a payoff matrix
M(i, j) for i = 1, . . . , N , j = 1, . . . , N , and there is also a sequence of random variables,
X1,X2, . . . ,XN , assumed to be a martingale (i.e. for all n ≥ 1 E(Xn+1|X1, . . . ,Xn) = Xn

a.s.). At stage k, if the players choose resources ak and bk, the stage payoff isXk ·M(ak , bk).
The overall payoff is the sum of the stage payoffs. We have

Theorem 5. If at each stage k, Xk is observed before the players make their choices, and
if the {Xi}N

i=1 form a martingale with finite mean, E(X1) = µ, then the value of the game
is V = µ(1/N)

∑ ∑
M(i, j), and the Gale strategies are optimal.

Proof. Follow Gale’s proof (or the proof of Theorem 2) but in the inductive step, suppose
Player II uses the Gale strategy and Player I sees X1 and uses a1. Then conditional on
X1, the expected payoff is

1
N

N∑
k=1

[X1M(a1, k) + E(X2|X1)
1

N − 1

∑
i�=a1

∑
j �=k

M(i, j)]

= X1
1
N

N∑
k=1

[M(a1 , k) +
1

N − 1

∑
i�=a1

∑
j �=k

M(i, j)]

= X1
1
N

N∑
i=1

N∑
k=1

M(i, k).

(10)

This does not depend on a1, and its expected value is V .
In this theorem, the players may not only ignore their opponents choices, they may

ignore the X’s as well. We may even let one of the players choose the distribution of the
martingale as play proceeds, provided it starts with E(X1) = µ. That is Player I, say, can
choose at stage k > 1 the conditional distribution of Xk given X1, . . . ,Xk−1, provided it
satisfies E(Xk|X1, . . . ,Xk−1) = Xk−1.

If the players get to observe the X’s only after they make their choices, we can weaken
the condition on the distribution of the X’s.

Definition. A sequence of random variables, X1,X2, . . ., is said to have stable mean or
to be mean-stable if for all k ≥ 1,

E(Xk|X1, . . . ,Xk−1) = E(Xk+1|X1, . . . ,Xk−1) a.s.

For k = 1 this means that E(X1) = E(X2). Note that if X1,X2, . . . is mean-stable,
then at any stage k, the conditional expectation of all future observations is the same, that
is, for all k and n > k, E(Xn|X1, . . . ,Xk−1) = E(Xk|X1, . . . ,Xk−1). This is because

E(Xk+2|X1, . . . ,Xk−1) = E(E(Xk+2|X1, . . . ,Xk)|X1, . . . ,Xk−1)
= E(E(Xk+1|X1, . . . ,Xk)|X1, . . . ,Xk−1)
= E(Xk+1|X1, . . . ,Xk−1) = E(Xk|X1, . . . ,Xk−1)
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and so on by induction.

A martingale is automatically mean-stable. But so also is any sequence, Xi, that is
exchangeable, i.e. the distribution of X1, . . . ,XN is invariant under permutations of the
subscripts. For example, the Xi could arise as a sample from a normal distribution whose
unknown mean has been chosen at random from a normal distribution with mean µ.

Theorem 6. If at each stage k, Xk is observed after the players make their choices, and
if the {Xi}N

i=1 is mean stable with finite mean E(X1) = µ, then the value of the game is
V = µ(1/N)

∑ ∑
M(i, j), and the Gale strategies are optimal.

Proof. In the proof of Theorem 5, equation (10) is replaced by

1
N

N∑
k=1

[E(X1)M(a1 , k) + E(E(X2|X1))
1

N − 1

∑
i�=a1

∑
j �=k

M(i, j)]

= E(X1)
1
N

N∑
k=1

[M(a1, k) +
1

N − 1

∑
i�=a1

∑
j �=k

M(i, j)].

In Hidden Card Goofspiel, N = 13 and the distribution of X1, . . . ,X13 is uniform over
all permutations of {1, 2, . . . , 13} and so is exchangeable. Therefore, Theorem 6 contains
the result of Ross on Hidden Card Goofspiel. In Goofspiel, the card is turned up before
play, so neither Theorem 5 nor Theorem 6 applies. In fact, Ross has a very interesting
result about Goofspiel. Namely, if one of the players chooses his cards completely at
random (i.e. uses a Gale strategy), then the optimal response of the other player is to
match the card turned up from the spade pile. This shows that Theorem 5 would be false
under the hypothesis that the X1, . . . ,XN is an exchangeable sequence. Sakaguchi (1977)
and Nakai (1980) have studied the problem of Theorem 5 under the assumption that the
Xi are independent and identically distributed.

5. Application to a game-theoretic version of the generalized house selling
problem.

The generalized house selling (GHS) problem was introduced by Derman, Lieberman and
Ross (1972) as a dynamic programming model and was subsequently generalized in various
directions (Albright (1974, 1977), Righter(1987, 1988, 1989)). A game-theoretic version
of the problem, extending work of Brams and Davis (1978) and Sakaguchi (1980) on
peremptory jury challenges, has been treated by Nakai (1982).

In the original version (Derman et al.), a company has on hand N workers, whose
values are known and denoted by y1, y2, . . . , yN , assumed to be arranged in nondecreasing
order. A sequence of i.i.d. random variables, X1,X2, . . . ,XN , representing jobs, arrive
sequentially, and each job as it arrives must be assigned to one of the available workers.
Thus, at each stage k, k = 1, . . . , N , the controller observes Xk and chooses a ynk from the
N − k + 1 remaining workers. Then ynk is removed from the set of available workers, the
payoff for this stage being the product, Xkynk , and the process proceeds to the next stage.
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The total payoff is the sum of the payoffs over all of the stages. Derman et al. showed that
when there are ν stages to go, there exist constants, −∞ = a0ν ≤ a1ν ≤ a2ν ≤ . . . ≤ aνν =
+∞, which may depend on the distribution of the X’s but are independent of the y’s, so
that the policy that maximizes the expected total payoff is to pick from the remaining y’s
the t-th in increasing order if the observed XN−ν+1 falls in the interval (at−1,ν , at,ν ].

Here, we are interested in the following two-person zero-sum game-theoretic gener-
alization of the GHS problem, which we will call the GHS game. Players I and II, with
resource sets Y = {y1, . . . , yN} and Z = {z1, . . . , zN} respectively, play the following game.
At each stage k, 1 ≤ k ≤ N , they make simultaneous choices ymk , znk and player I gets
from II a payoff of Xkymkznk , where Xk, k = 1, . . . , N , is some sequence of random vari-
ables. Whether the two players observe the X’s before or after they make their choices
will be discussed subsequently. The yi’s and the zj ’s can be positive, negative or zero.
The total payoff is the sum of the stage payoffs. Both players learn the stage payoff and
their opponent’s move before the next stage begins. Then, Theorems 5 and 6 lead to the
following

Corollary 2. (a) If the sequence Xk, k = 1, . . . , N , is mean-stable with mean µ and is
observed by the two players after they make their moves at each stage, then, the value of
the game is v = (µ/N)(

∑
yi)(

∑
zj). (b) If the sequence Xk, k = 1, . . . , N , is a martingale

having mean µ and is observed by the two players before they make their moves at each
stage, then, the value of the game is v = (µ/N)(

∑
yi)(

∑
zj). In both cases (a) and (b),

the Gale strategy is an optimal strategy for both players.

Notes. 1. In case (b), the distributions of the X sequence may be chosen along the
way by either player without affecting the result. For example at stage k, the distribution
of Xk may be chosen arbitrarily by Player I provided E(Xk|X1, . . . ,Xk−1) = Xk−1. The
player who makes this choice could even be decided by a random mechanism.

2. Instead of Xkymk znk , the payoff may be Xkf(ymk , znk ) at each stage k, k =
1, . . . , N , for some bilinear function f , with the corresponding change in the value formula.

As is the case with Goofspiel, the above result is not necessarily valid if the X’s are
exchangeable and observed before the players make their moves. In the following theorem,
we mimic the result of Ross on Goofspiel by finding Player I’s optimal response in this
case if the Gale strategy is used by Player II. This will then show that if a player plays
completely at random, then the other player has a better strategy than playing completely
at random. To this end we will need the following result.

Lemma 1. Let v(x, {yt}N
t=1) be the value function of the maximization GHS problem

conditional on X1 = x and suppose that the sequence of the X’s is mean-stable. Then for
c ≥ 0, cv(x, {yt}N

t=1) = v(x, {cyt}N
t=1).

Proof: Multiplication of the y’s with c ≥ 0 keeps the ordering unchanged and hence the
optimal policies in all problems are identical. Writing down the optimality equations and
using induction completes the proof.

Assume now that in the GHS problem the stage payoff depends on two mean-stable
sequences of random variables with finite means, independent one from the other, Xk,
k = 1, . . . , N , and Zk, k = 1, . . . , N , with Zk > 0 a.s. At each stage the controller observes
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the corresponding X before and the corresponding Z after he makes his move (i.e. choice
of the corresponding y). Let us denote the joint distribution of N of the Z variables by
FN and let us call this the two sequence GHS problem. We then have,

Theorem 7. The conditional value V (x, {yt}N
t=1, FN ) given X1 = x for the two sequence

GHS problem is given by v(x, {E[Z]yt}N
t=1), where E[Z] is the expectation of any Z vari-

able. The optimal policy at each stage k, k = 1, . . . , N , is to play optimally in the one
sequence (X) corresponding GHS problem.

Proof: The proof is by induction on N . It is easily shown for N = 2. Assume it is true
for N − 1. Then, the optimality equation and the induction hypothesis give

V (x, {yt}N
t=1, FN ) = max

1≤i≤N

{
xyiE[Z1] + E

[
V (X2, {yt}N

t=1
t�=i

, FN−1)
∣∣∣X1 = x

]}
= max

1≤i≤N

{
xyiE[Z1] + E

[
v(X2, {E[Z2|Z1]yt}N

t=1
t�=i

)
∣∣∣X1 = x

]}
.

Using E[Z2|Z1] ≥ 0 and the independence of the X and Z sequences, Lemma 1 implies
that

V (x, {yt}N
t=1, FN ) = max

1≤i≤N

{
xyiE[Z1] + E

[
E[Z2|Z1]v(X2, {yt}N

t=1
t�=i

)
∣∣∣X1 = x

]}
= max

1≤i≤n

{
xyiE[Z1] + E[Z2]E

(
v(X2, {yt}N

t=1
t�=i

)
∣∣∣X1 = x

)} .

Factoring out E[Z] = E[Z1] = E[Z2], and using the optimality equation for the one
sequence problem and finally Lemma 1, we conclude that

V (x, {yt}N
t=1, FN ) = E[Z] max

1≤i≤N

{
xyi + E

(
v(X2, {yt}N

t=1
t�=i

)
∣∣∣X1 = x

)}
= E[Z]v(x, {yt}N

t=1)

= v(x, {E[Z]yt}N
t=1).

The optimal policy of Theorem 7 may be significantly better than playing randomly.
This may be already be seen in the game of (adult) Goofspiel with arbitrary N . The value
is zero if both players play randomly or if both players play optimally. Suppose Player II
plays randomly and Player I uses the optimal policy as given by Ross or Theorem 7 (match
the card that is turned up). When card i is turned up, Player I wins i with probability
(i − 1)/N and loses i with probability (N − i)/N . Player I’s expected return is then∑N

i=1 i((i − 1)− (N − i))/N = (N + 1)(N − 1)/6.
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