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Introduction

Problems of statistical inference with an infinite dimensional parameter
space, usually a space of probability distributions over a set, are of great
importance both theoretically and practically. The Bayesian approach to such
nonparametric problems requires that a probability distribution be placed over
this space. Much progress has been made in the past 15 years and the results
have been scattered throughout the statistical and probability literature. It is the
purpose of this paper to review the progress in this area to date with special
emphasis on random probability measures and on results that have appeared
since the review article of Ferguson (1974).

The central class of distributions for use in these problems is the class of
Dirichlet processes. Developments in the basic theory of such processes are
reviewed in the next section. The settling of Doksum’s conjecture by James and
Mosimann is observed in the third section on tailfree and neutral processes.
Progress in the application of mixtures of Dirichlet processes to the Bayesian
analysis of empirical Bayes problems, bio-assay and density estimation is pre-
sented in the fourth section. The far-reaching extension of the basic techniques to
problems with partially censored data is reviewed in the fifth section, with
application to reliability and the Cox proportional hazard model. The use of
random distributions in empirical Bayes estimation, initiated by Hollander and
Korwar, has been extensively developed and is reviewed in the sixth section. In
the seventh section, the problems of inconsistency of the Bayes estimates in
Dalal’s symmetric Dirichlet model, discovered by Diaconis and Freedman, are
presented. In the final section, various other Bayesian nonparametric techniques
and applications are briefly touched upon.

The Dirichlet Process

Let % be a set, let A be a o-field of subsets of %, and let o be a finite
nonnull measure on (%, A). Among the various methods for putting prior
distributions on the set of all probability distributions over (%, A), the Dirichlet
process is still central. As defined in Ferguson (1973), a Dirichlet process with
parameter «, denoted U(a), is a random process, P, indexed by elements of A
with the property that for all positive integers k, and every measurable partition
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Aqye.y Ap of B, the random vector (P(Aj),...,P(A;)) has a k-dimensional
Dirichlet distribution with parameter (a(A;),...,(A;)). The basic result for this
process is:

Theorem 1 (Ferguson, 1973)

If Pis a Dirichlet process with parameter «, and if, given P, Xj,..., X, is
a sample from P, then the posterior distribution of P given Xj,... X, is a
Dirichlet process with parameter o + X6(X;), where 6(z) represents the
distribution giving mass one to the point z.

Two proofs of the existence of such a process were given, one non-
constructive using the Kolmogorov consistency conditions, and the other con-
structive, in which P is a sum of a countable number of point masses whatever be
a. That a Dirichlet process has a representation that is discrete a.s. even if « is
continuous is a striking fact that has been the subject of several papers, e.g.,
Blackwell (1973), Berk and Savage (1979), Basu and Tiwari (1982). A new
construction simpler than that of Ferguson has been given by Sethuraman and
Tiwari (1982).

Theorem 2 (Sethuraman and Tiwari, 1982)

Let Y3, Ys,... be i.i.d. with a beta distribution, Be(M,1) M > 0, let 7,
Z... be i.i.d. Fy, and let {Y;} and {Z;} be independent. Define P; = (1 - Y;),
and Pp = Yy ... Y, y(1 - Yy) for n > 1. Then, P = TP;6(Z;) is a Dirichlet
process with parameter « = MF,.

Throughout, we shall use M = (%) to represent the total mass of «, and
Fy = a/M to be the prior guess at P. The latter phrase stems from the fact that
from the definition, P(A) has a beta distribution, Be(a(A4), M-c(A)), so that
EP(A) = a(A)/M = Fy(A). In particular, the posterior guess at P given a
sample from P is, according to Theorem 1, F = p, Fy + (1 - pn)ﬁ‘n, where F, is
the empirical process and p, = M/(M + n). As a consequence, suppose that it is
required to estimate with squared error loss the mean p = [zdP(z) of an
unknown distribution P on the real line based on a sample Xj,...,X,, with prior
P € D(MF,), where Fy has finite first moment. Then, p is finite a.s. and

By | Xypeo uXa) = ooty + (1= 0) %,

where o is the mean of Fy, and X, is the sample mean. (In subsequent
discussions, Bayes procedures are assumed to be taken with respect to squared
error loss, unless stated otherwise.)

In regard to this simple problem, there was an error in Ferguson (1974)
in stating that p is finite a.s. if and only if F; has a finite first moment. That the
only if part is false was pointed out in Doss and Sellke (1982), who obtain the
following results on the tail behavior of P. Let F(t) = P((-oo, {]).
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Theorem 3 (Doss and Sellke, 1982)
If F € D(MFy), then

exp(=hy (1)) < 1-F(t) < eap(=hy(t))
for sufficiently large ¢ a.s.

where y(1) = 2 log | log(L= Fo())I/(1 = F()) and hy(§) = {(1 = Fo(t)
x [log(1 - Fo())?}

As an example of this behavior, Yamato (1984) obtains the distribution
of 4 when Fj is a Cauchy distribution.

Theorem 4 (Yamato, 1984)

If F € D(MF,) where Fy is a Cauchy distribution, then the random
variable p = [ zdF(z) has the same Cauchy distribution.

In Cifarelli and Regazzini (1979) and in Hannum, Hollander and
Langberg (1981), methods of finding the distribution of the mean of a Dirichlet
process are reported.

A number of simple applications were presented in Ferguson (1973) such
as estimating a distribution function or a median, mean or variance. In the two-
sample problem of estimating P(X > Y), the Mann-Whitney-Wilcoxon rank-
sum statistic was seen to appear naturally. A number of other similar
applications have appeared since that time. We mention a few.

Yamato (1975) obtains a Bayes estimate for d(F, G) =
[ (F(2) - G())d(F() + G(z))/2, based on independent samples from F and G
which are given independent Dirichlet priors. Campbell and Hollander (1978)
provide estimates of the rank of X; among Xj,...,X, based on Xj,...,X,, s < n,
when sampling from a Dirichlet process F. Hollander and Korwar (1980) find a
Bayes estimate of A(z) = G 1(F(z)) — z, a measure of the difference between F
and G at z, based on independent samples from each, with G known and F
having a Dirichlet prior. Dalal and Phadia (1983) consider the problem of
estimating 7 = E{sign((X - X')(Y - Y'))}, a measure of dependence for a
bivariate distribution, where (X, Y) and (X', Y') are independent samples from
the distribution. The Bayes estimate is computed using a Dirichlet prior in 2-
dimensions, and Kendall’s tau is seen to appear naturally. Zalkikar, Tiwari and
Jammalamadaka (1986) obtain a Bayes estimate for A(F) = P(Z > X + Y),
where X, Y, 7 are i.i.d. chosen from F, based on a sample from F, which is glven
a Dirichlet prior.

These are all examples of estimation problems. The difficulty of using
Dirichlet priors in hypothesis testing problems was mentioned in Ferguson
(1973), but Susarla and Phadia (1976) show how to test Hy: F < Fy for a given
distribution function Fj using a Bayes approach. The idea is to replace the usual
zero/one loss function with the smoother loss L(F, ¢p) = [(F - FO) dW and
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L(F, a)) = [(F - F;)” dW, where ag (resp. a;) is the action accept (resp. reject)
Hp, and W is an arbitrary weighting measure. This idea also extends to multiple
decision problems.

Relation to Tailfree and Neutral Processes

Let Py, P,,... be a sequence of finite measurable partitions of % such
that for all » > 1, ®,41 is a refinement of P,. We say that a random
probability measure P on (%, A) is tail-free w.r.t. the sequence {P,} if the sets
of random variables {P(B|A): A € ®,;, B € P,} for n = 1, 2,... are
independent. (Here P = {%}.) The notion of tailfree processes goes back to
Freedman (1963), Fabius (1964) and Kraft (1964). In the dyadic tailfree process,
each set of the partition Py, is cut into two pieces in the partition Prn

One drawback of using a tailfree process as a prior is that the behavior of
the estimates depends on the choice of the partitions used to describe the process.
This is true with one notable exception. The Dirichlet process is tailfree with
respect to every sequence of partitions. Moreover, if a process is tailfree with
respect to every sequence of partitions then it is either a Dirichlet process or a
limit of Dirichlet processes or concentrated on two nonrandom points (Fabius,
1973). '

There is another class of prior distributions that shares this property to a
lesser degree, the processes neutral to the right, introduced by Doksum (1974). A
random distribution function F(?) on the real line is said to be neutral to the
right if for every m and 4 < # < ... < lm, the random variables 1 — F(4;),
(1 = F(t3))/(1 = F(#))y.. (1 = F(tm))/(1 = F(t,,—;)) are independent. This is
equivalent to saying Y(?) = -log(1 — F({)) has nonnegative independent incre-
ments. The basic theorem is:

Theorem 5 (Doksum, 1974)

If F is neutral to the right, and if Xj,...,X, is a sample from F, then the
posterior distribution of F given Xj,...,X, is neutral to the right.

Basically, a process neutral to the right is tailfree with respect to every
sequence of partitions {®,} such that %, is obtained from ®, by splitting the
rightmost element, (t;, 0o) into two pieces, (tn, tnt1]; (fn41, 00). Thus, a
Dirichlet process on the real line is neutral to the right, and neutral to the left,
etc. Doksum (1974) conjectured that this property characterizes the Dirichlet
process. This has been settled affirmatively.

Theorem 6 (James and Mosimann, 1980)

If F is neutral to the right and neutral to the left, then F is a Dirichlet
process or a limit of Dirichlet processes or concentrated on two nonrandom
points.
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For another characterization of the Dirichlet process in terms of

Johnson’s sufficiency postulate or learn-merge invariance, see Bége and Mocks
(1986).

Applications of Mixtures of Dirichlet Processes

In the paper of Antoniak (1974), a number of Bayesian statistical
problems with Dirichlet process priors were discussed whose solution involved
posterior mixtures of Dirichlet processes, in particular empirical Bayes, bio-assay,
regression, discrimination, and classification problems. The computational
difficulties involved were such that Antoniak treated only very small size
problems. Since then, Monte Carlo methods due to Kuo (1986) have been
developed making Bayes solutions to these problems feasible. See Dalal (1978)
and Dalal and Hall (1980) for a discussion of approximation of arbitrary random
probability measures by mixtures of Dirichlets.

1. Bayes empirical Bayes

Consider first the Bayes empirical Bayes problem. In the usual empirical
Bayes setting, it is assumed that unobservable parameters 8;, j = 1,...,n are taken
independently from an unknown distribution G, and that associated with each 05,
a random variable X; is chosen independently from a distribution with density
T (:cw]) for j = 1,...,n. The problem is to estimate one or more of the §;. Most
procedures use Xl, .,Xn to obtain an estimate G, of G first and then estlmate 0;
as the Bayes estimate with respect to the prior G,. In the Bayes approach to the
empirical Bayes problem, a prior distribution is placed on G. Berry and
Christensen (1979) take G to be a Dirichlet process, P(a). Following Antoniak,
the posterior distribution of G is a mixture of Dirichlet processes with parameter
a + 26(9) and mixing distribution H(@ | X), the posterior distribution of the ;
given the X, in symbols,

GlXe [ G-D(a +§6(0ﬁ) dH(8 | X). (1)

In view of the computation difficulties, even in the simple case where 5 (26) is a
binomial distribution with probability of success # and sample size dependlng on
J, Berry and Christensen suggest a couple of rough approximations to the Bayes
rule that are easy to evaluate.

Monte Carlo approximation of the exact Bayes estimate was considered
by Kuo (1986a, 1986b). Let H(f) denote the unconditional marginal distribution
of g,

dH(0) = ﬁl (M+j- 1)—1<a 4 Ela(ei))(dej), ()
= 3=
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as given in Blackwell and MacQueen (1973). Then, from a formula of Lo (1984)
for the posterior distribution of § given X,

dH01X) = TL(xi0p @) / [fjrjl RX,165) dE(@) 3)

the exact Bayes estimate of 8, say, may be written,

J 0a115( X;16,) dH(6;) (4)
JUF(X;160;)dH(8;)

0n(X) = [0ndH(9|X) =

The obvious Monte Carlo method in which vectors Ql,...,QN are generated i.i.d.
from the distribution (2) and then used to approximate the two integrals in the
right side of (4) does not work well. In the method of Kuo, Monte Carlo is used
only to decide which of the 6; are equal to which others according to (2). Then
the n-dimensional integrals in the right side of (4) reduce to a product of 1-
dimensional integrals dFy(6), which can often be integrated exactly, for example,
if Fip(0) is taken as a conjugate prior of f{z|f).

2. Bayesian bio-assay

As another application, consider the bio-assay problem. Let F(¢) denote
the probability of a positive response for a subject treated at dose level ¢ It is
assumed that F(?) increases with &. Suppose that n; subjects are treated at dose
level #; and that Y] is the number of positive responses, j = 1,...,L. It is assumed
that the Y; are independent binomial variables with probability F(t;) of success.
The problem is to estimate F. The Bayes approach to this problem goes back to
Kraft and Van Eeden (1964) who use a dyadic tailfree process as a prior.
Ramsey (1972) uses a Dirichlet process prior and obtains the modal estimates of
F by maximizing the finite dimensional joint density of the posterior distribution.
(This seems to be the first description of the Dirichlet process; unfortunately, it is
in a problem where the posteriors are not Dirichlet.)

Bhattacharya (1981) develops a large sample procedure for
approximating the finite-dimensional distributions of the posteriors as a normal
mixture of Dirichlet distributions. Disch (1981) considers the problem of
estimating quantiles of a potency curve with Dirichlet process priors, and avoids
the difficult computational tasks by suggesting approximations similar to those
made by Berry and Christensen in the empirical Bayes problem. However, the
methods of Kuo may be applied to this problem as well. For related work, see
Kuo (1983, 1988) and Ammann (1984).
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3. Bayesian density estimation

Another application of mixtures of Dirichlet processes is to estimate a
density, f(z), based on a sample of size n from f. Lo (1984) puts a prior on f, by
writing {z) = [ K(z, v)dG(u) and letting G have a Dirichlet process prior, D(c).
He obtains the posterior distribution of G as a mixture of Dirichlet processes and
uses this to obtain formulas for the Bayes estimate of £ One of his applications
is to the two-parameter normal kernel K = ¢(z|p,0). This example was
expanded in Ferguson (1983) who, using the representation of Sethuraman and
Tiwari (1982), described fz) as a mixture of normal densities, LPi¢(X|p,0)),
where the P; are as in Theorem 2 and the (y,0;) are a sample from the four-
parameter conjugate prior for the normal. Kuo’s method was seen to provide a
simple and effective means of performing the computations for large data sets.
The estimates are seen to provide evidence for two suggestions: (1) for using a
variable kernel estimate with wider windows at the tails, and (2) for using
shrinkage estimates on the observations, namely bringing observations in toward
the center, proportional to their distance from the center. In the paper of Kumar
and Tiwari (1989), Kuo’s method is applied to estimating a mixture of
exponential densities.

Gaussian processes may also be used to generate densities. In the
approach of Leonard (1978), a density on the interval (a, b) is written as
ezp{g(¥)}/ [ ezp{g(z)}dz where ¢ is a given Gaussian process. An alternate
approach is provided by Thorburn (1986), in which the density is written as
ezp{g(?)} where ¢(?) is a Gaussian process conditional on [ ezp{g(z)}dz = 1.

Application to Censored Data and Reliability

An important extension of nonparametric Bayes theory is to the
treatment of censored data. The problem of estimating an unknown cdf F based
on censored data is usually formulated as follows. Let Xj,...,X, be a sample
from F, and let the censoring points, Yj,...,Yn, be random variables independent
of the X’s. The observations are Z; = min(X;, Y;), and d; = I(X; < Y)),
J = 1,...,n, where I{A) represents the indicator function of the set A. The
problem is to estimate F' based on the observations. The usual nonparametric
estimate is the product limit estimate, due to Kaplan and Meier (1958).

The first completely Bayes approach to this problem was made by
Susarla and Van Ryzin (1976) who use a Dirichlet process as a prior for F. Let
u; < Uy < ... < u be the distinct observations among Z7;,...,Zy; let A; denote
the number of censored observations at u; let k() denote the number of u; < 4
and let kj be the number of Z; > u,,

Theorem 7 (Susarla and Van Ryzin, 1976)

If F € 9(a), then the posterior expectation of the survival function,
1 — F(%), given the observations is
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a(t) + hk(t) k(2) a(uj) + b+ A;

E(1 - F({)|data) =
(L~ Rgldate) = == T e

(5)

where a(?) = a(t, o©), and M = o(R).

This estimate reduces to the Kaplan-Meier estimate as the prior
information, M, goes to zero. If there are no censored observations, the product
term vanishes and we get the Bayes estimator of Ferguson (1973). Blum and
Susarla (1977) complemented this result by showing that the posterior
distribution of F given the data is a mixture of Dirichlet processes with specified
transition and mixing measures.

This research was generalized to prior distributions neutral to the right
by Ferguson and Phadia (1979). With Dirichlet process priors, the updating
mechanism of going from prior to posterior is easy for uncensored observations
and difficult for censored observations. For prior processes neutral to the right, it
is the other way around. Thus, the generality provided by priors neutral to the
right make them the natural priors to use for censoring problems. Also, it should
be noted that the estimate in Theorem 1 does not depend on the distributions of
the Y;. Indeed, this should be the case when a Bayesian analysis is performed; in
fact, as Ferguson and Phadia point out, the Y; may be considered as constants,
allowing treatment of problems in which future Y; may depend upon past
observations.

However, if X; and Y; are allowed to be dependent, the marginal
distribution of X may not be identifiable. Nevertheless, a Bayesian treatment of
the problem is possible and has been carried out by Phadia and Susarla (1983),
by assuming a Dirichlet process prior for the joint distribution of (X, Y). They
derive the Bayes estimate of the joint distribution, which of course need not be
consistent.  See also Arnold et al. (1984). Tsai (1986) adopts a different
approach by taking the joint distribution of (Z, d) to be a Dirichlet process on
R x{0,1}, and making an independence-like assumption that makes the marginal
distribution of X identifiable, and the Bayes estimate of F consistent. Since the
marginal distribution of F is not Dirichlet under this assumption, his resulting
Bayes estimate is quite distinct from that of Susarla and Van Ryzin in the
independent case.

For a review of the area up to 1980, see Phadia (1980b). For consistency
of (5) and the product limit estimate, see Susarla and Van Ryzin (1978b) and
Phadia and Van Ryzin (1980). For related results, see Gardiner and Susarla
(1982, 1983), Colombo, Costantini and Jaarsma (1985), Rao and Tiwari (1985),
Johnson and Christensen (1986) and Berliner and Hill (1988).

1. Application to reliability theory

A useful generalization of the gamma process for statistical problems has
been introduced independently by Dykstra and Laud (1981) and Lo (1982). Given
a nondecreasing left-continuous function & on [0, co) with «(0) = 0, V(%) is said
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to be a gamma process with parameter o if V(%) is a process with independent
increments such that for all ¢ > 0 the distribution of V(¢) is §(a(%), 1), the
gamma distribution with shape parameter «(t) and scale parameter 1. Given a
nonnegative function 8 on [0, co), the weighted gamma process with parameters
o and B, §(e, B), is then defined as the process n(f) = f[o t]ﬂ(s)dV(s). Its
elementary properties include :

Theorem 8 (Dykstra, Laud and Lo)

If r € (e, B), then ris a process with independent increments, E(r(%))
= S o,4B()da(s), and Var(r(t) = [ o ,6%(5)das).

Dykstra and Laud use this process (which they call an extended gamma
process) as a prior distribution on the hazard rate function in nonparametric
reliability problems; that is, they assume that the survival function, S(t) =
1 - F(t), has the form S(¢) = erp{—f[o’ﬂr(s)ds}, where r € G(e, B).

Theorem 9 (Dykstra and Laud)
If r € G(a, B), then ES(¥) = e:cp{—f[o’t]log(l + B(s)(t - 5))da(s)}. If

X1y..4Xn is a sample from S, then the posterior distribution of r given the
censored data  X; 2 ity Xat o Rriiedy ds §(e87), ~whete

B9 = B/ + By (5;- ).

They also show that the distribution of r given an uncensored sample is a
mixture of weighted gamma processes, and examples are given showing the
computational problems involved can be solved. This approach gives probability
one to the absolutely continuous distributions, and Bayes estimates of the hazard
rate and the cdf are derived.

Since in the above construction the gamma process has nondecreasing
sample paths, the resulting survival distribution has increasing failure rate (IFR).
Ammann (1984, 1985) puts this approach in a more general setting by repre-
senting the hazard rate as a function of the sample paths of nonnegative processes
with independent increments which consist of an increasing component as well as
a decreasing component. This results in a broad class of priors over a space of
absolutely continuous distributions which contain IFR, DFR and U-shaped
failure rate survival distributions. =~ Ammann finds the posterior Laplace
transforms of these processes based on data that may contain censored
observations, and applies his approach to the competing risk model as well.

The Bayesian analysis discussed above may be extended to incorporate a
covariate using the Cox proportional hazard model as was done by Kalbfleisch
(1978). Independent observations Xj,... X, are made with respective covariate
vectors wy,...,w, according to the survival distribution,

S(z | w) = S(a)?
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where 3 is the vector of regression parameters, and Sy(z) is the baseline survival
distribution. While the main interest in covariate analysis centers around the
estimation and hypothesis testing of 3, considering Sy(z) as a nuisance
parameter, it is still of interest to estimate Sy(z) by itself. Writing Sy(z) =
ezp{~A(z)}, Kalbfleisch takes A(z) to have a gamma process prior, and carries
out the estimation of B by determining the marginal distribution of the
observations as a function of 8 with Sy(z) integrated out. Thus, the treatment is
semi-parametric and semi-Bayesian. This approach was generalized to allow
1 - Sy(z) to be an arbitrary process neutral to the right by Wild and Kalbfleisch
(1981). For related results, see Padgett and Wei (1981) and Mazzuchi and
Singpurwalla (1985).

Empirical Bayes Estimation

Bayesian methods have been found to be useful in the non-Bayesian
treatment of empirical Bayes problems. Suppose we are at the n + 1°¢ stage of
an experiment, and information is available not only from the current stage but
also from the n previous stages. Let Fy, Fy,...,F,11 be n+1 distributions on the
real line, and for j = 1,...,n+1, let X; = (le’""ijj) be a sample of size m; from

F;. As a prior, we assume that F,...,F,; are a sample from the Dirichlet P(a)
where « = MG,y. We wish to estimate F,,y1({) with squared error loss.

LFui1, F) = [ (Faa(9) - F(2))*dW(a) (6)

for some finite measure W. If we know M and G,, this becomes a
straightforward Bayes problem whose solution is

Fag1() = 4,4, Go(d) + (1 = gy 1) Faa(9) (7)

where ¢. = M/(M + m;) and Fj(t) is the sample distribution function based on
X.. If o is unknown, we cannot use this estimate, but we may use Xy, o
help estimate M and Gg.

Korwar and Hollander (1976) and Hollander and Korwar (1977) consider
the case where M is known and Gy is unknown. They estimate Gy(?) by the
average of the sample distribution functions of X,...,X,, and propose the
following empirical Bayes estimator of F,41:

Ho1()) = 0, 57 FfD/n+ (1~ g0 Fara(0). (8)
=1

We say that this sequence of estimates is asymptotically optimal relative
to a class of Dirichlet process priors if the Bayes risk of H,yq given «, call it
(o, Hp41), converges to the Bayes risk of the Bayes estimate (7), call it n{a),
whatever be « in the class. Since asymptotic optimality is a weak property, one
wants rates of convergences. Korwar and Hollander prove:
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Theorem 10 (Hollander and Korwar, 1977)

ey Hyqq) = r(a)[l + €11 E;,;l(l - qj)“l/nz]

When all the m; are equal, say to m, this reduces to r(a)(1 + M/(mn)).
Thus, {H,41} is asymptotically optimal relative to the class of Dirichlet priors
with fixed M, and the rate of convergence is 0(1/n). Hollander and Korwar also
treat the empirical Bayes estimation of a mean, with similar results.

In their paper on testing hypotheses, Susarla and Phadia (1976) also
consider the empirical Bayes extension of their problem using the method of
Hollander and Korwar. In addition, they allow M as well as G, to be unknown,
and, using an estimate of M based on the estimate of Korwar and Hollander
(1973), exhibit an empirical Bayes estimate that is asymptotically optimal
relative to the class of all Dirichlet priors. The extension of the Hollander and
Korwar result to unknown M was made in the equal sample size case by
Zehnwirth (1981), using a new estimate of M. The estimate is as follows. Let F,
denote the F-statistic in the one-way analysis of variance based on D SR S ¥ o
= ratio of the mean sum of squares between populations to the mean sum of
squares within populations).

Theorem 11 (Zehnwirth, 1981)

m/(1 - Fy) — M in probability as n — co.

The extension to empirical Bayes estimation of a distribution function
based on censored data was made by Susarla and Van Ryzin (1978a) when all
sample sizes, m, are 1, obtaining asymptotically optimal estimates at rate
0(1/n). Since the proposed estimate was not necessarily nondecreasing, Phadia
(1980a) suggested using a simpler somewhat better estimate of Gy, which has the
desirable property that the resulting empirical Bayes estimate is nondecreasing.
This problem has also been treated by Ghorai (1981), taking a gamma process
for —log(1 — F(#)) and obtaining asymptotically optimal estimates at rate 0(1/n).

In the uncensored case, Ghosh, Lahiri and Tiwari (1989) propose an
empirical Bayes estimator of F,y; that uses both the past as well as the current
data for estimating Gy. Their proposed estimator is given by (7) with G,
replaced by

> n+1 3 nt+1
Golt) = 1, (1~ F(Y 7 Za-g) )

Letting I~{n+1 denote the resulting estimator, they derive the following result.
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Theorem 12 (Ghosh et al., 1989)

-1

W(Hatr, @) = ()| 1 + qn+1(:§ (1- qp) i (10)

That this is a uniform improvement on the estimator in Theorem 10 is
easily seen using Schwartz’ inequality. Moreover Ghosh et al. have established
the optimality of the weights used in (9), namely that the Bayes risk of fIn+1 is
smaller than the Bayes risk of any other estimator that is a linear combination of
the Fj. In addition, they make a similar improvement to Zehnwirth’s estimator
of M by allowing it to depend upon X, +1 as well as by allowing the sample sizes
to differ.

We comment briefly on other papers in the area. Hollander and Korwar
(1976) treats the empirical Bayes estimation of P(X > Y) in a two-sample
problem. Phadia and Susarla (1979) treat the same problem allowing right
censored data, Ghorai and Susarla (1982) consider the empirical Bayes
estimation of a density using Lo’s estimate. Ghosh (1985) and Tiwari and
Zalkikar (1985a, b) consider empirical Bayes estimation problems for general
estimable parameters of degree one and two. Tiwari, Jammalamadaka and
Zalkikar (1988) treat the empirical Bayes version of the paper of Gardiner and
Susarla (1983).

Random Symmetric Distributions; Problems of Consistency

An extension of the family of Dirichlet processes to the family of
Dirichlet invariant processes was introduced by Dalal (1979a). Let § =
{91"“’gk} be a fixed finite group of measurable transformations from % into
itself. 'Let o be a G-invariant finite non-null measure on %. A random
probability measure P on (%, A) is said to be a Dirichklet invariant process with
parameter o, in symbols P € TG(«), if P is G-invariant (surely) and if for every
partition (4;,...,4m) of % made up of measurable invariant sets,
(P(A1)y.oP(Am)) € D(a(Ay)y..a(Am)). Dalal and others (Tiwari, 1988;
Hannum and Hollander, 1983) give constructive definitions along the following
lines. Let P € F(a) and define P* as P*(4A) = (1/k)2g€gP(gA). Then the

distribution of P* depends only upon a*, where a*(A) = (1/kZ e ga(gA), and
P* € 2G(a*).

When § consists of only the identity transformation, 9G(e) corresponds
to the usual Dirichlet process, D(c). When § is generated by g¢(z) = -z, IG(a)
gives probability one to distributions that are symmetric about zero. Dalal
(1979a) derives several properties of the Dirichlet invariant process and applies
the theory to the estimation of a distribution function known to be symmetric
about a known point, §. The analysis is extended in Dalal (1979b) to the case
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where 6 is unknown but given a prior distribution » independent of P. See Dalal
(1980) for an expository article on these problems.

An important analysis of these results, both theoretically and practically,
has been given by Diaconis and Freedman (1986a, b). Such estimates may not
be consistent throughout the support of the prior, as detailed in Theorem 13
below. The first example of an inconsistent Bayes estimate was given by
Freedman (1963). A simple example of this phenomenon, Ferguson (1973), may
be described as follows.

Let the prior distribution of F be the mixture, F' = PoH + (1 - p)I(a),
where Dys the prior probability of H, is 1/2, where H is the uniform distribution
on the interval (0, 1), and where « = MH with M = 1. The support of F is the
set of all distributions on [0, 1]. The distribution of the distinct observations
among a sample Xj,...,X, from F is the same when F = 9(«) as when F = H.
Thus, as long as the observations are distinct, the posterior distribution of F
given Xj,...,Xyn is p,H + (1 - p, )W + X6(X;)), where p,, the posterior
probability of H, is easily computed to be p, = al/(a! + 1). If ever two
observations are exactly equal, then the possibility of H disappears and F has the
posterior distribution P(a + L6(X;)). Now, suppose that the true distribution is
continuous on (0, 1). No matter how non-uniform this distribution may be, the
Bayes estimate of F converges to U(0, 1).

Freedman and Diaconis (1983) have a positive result along the lines of
this example: If F is a mixture of P(a;) with a; = M;F; and if the M; are
bounded, then the Bayes estimate of F is consistent. In the example above, one
can think of H as a Dirichlet process with M = oo, so although F is a mixture of
Dirichlets, the M; are not bounded. In Dalal’s model, even if the true distri-
bution is symmetric, the Bayes estimate may oscillate indefinitely between two
wrong values.

Theorem 13 (Diaconis and Freedman, 1986a, b)

Let & and F be independent, with # having a standard normal
distribution, and F € 9¢(«) symmetric about zero, where o = MF, with Fy the
standard Cauchy distribution. Then there exists a symmetric density, h(z), with
a maximum at zero and bounded support, such that if the true distribution of the
X; has density h, then the Bayes estimate of 6 does not converge.

Doss (1984) provides a deep extension of the analysis of these problems
from symmetric Dirichlet priors to symmetric priors neutral to the right. Doss
(1985a, b) considers the problem of estimating a median in a different nonpara-
metric Bayes framework. Let F(z) be a distribution function with median zero,
let @ be a real number, and let Xj,....X, be a sample from F(z — §). To place a
prior distribution on F that chooses median zero distributions with probability
one, let o be a finite non-null measure, written as o = MF;, where Fj is a
distribution function with median zero, and suppose for simplicity that Fj has no
mass at zero. Let o and o denote the restrictions of a to (~oo, 0) and (0, co)
respectively. ~ Choose F_ and F, independently from %P(a_) and Day)
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respectively, and let F(?) = (F_({) + F4(%))/2. Thus, F is a random distribution
function such that F(0) = 1/2; denote the distribution of F by 9%(«).

Theorem 14 (Doss, 1985a)

Let § and F be independent, with § € » and F ¢ ":D*(a), and assume
that Fy has continuous density fo- Given 0 and F, let X = (X;,..,X,) be a
sample from F(z —60). Then the posterior distribution of 8 given X is

dv(0]X) = (DI f,(X; - 0)] M(X, 0)dw(6),

where M(X, 6)' = T(M/2 + nFu(0))T(M/2 + n(1 - Fu(6))), F, is the empirical
distribution function of X, II™ represents the product over the distinct X;, and
¢(X) is a normalizing constant.

Doss shows that if the true distribution of the X; is discrete, the Bayes
estimate of ¢ is consistent. However, if it is continuous, then the Bayes estimate
can converge to a wrong value, it can oscillate indefinitely between two wrong
values, or the set of its limit points can be dense in R.

Hannum and Hollander (1983) have derived the Bayes risk of Dalal’s
(1979a) estimate of the distribution function under DG(c), and have compared it
to the risk of Ferguson’s (1973) estimator under P(a). This enables them to (i)
assess the savings in risk obtained by incorporating known symmetry structure in
the model, and (ii) provide information about the robustness of Ferguson’s esti-
mator against a prior for which it is not Bayes. Yamato (1986, 1987) and Tiwari
(1988) used the Dirichlet invariant process prior to derive the Bayes estimator of
estimable parameters of an arbitrary degree.

Other Applications

Our survey is by no means complete. We mention a few other selected
results and applications in this final section. Binder (1982) considers finite
population models in which a population {Yj3,...,Yy} consists of a sample from
F € 9(a). A sample, Yys-- ¥y, is then taken from {Yj,...,Yy}, and the Bayes
estimate of XY is derived. The asymptotic distributions are found in Lo (1986).
Problems of finding confidence bounds for a distribution function have been con-
sidered by Breth (1978), who finds recursive methods for computing
P(u; < Ft) < v; for j = 1,..., m) for fixed numbers {u;}, {v]-} and {t;} when F
is a Dirichlet process. In a continuation paper, Breth (1979) applies the method
to finding confidence intervals for quantiles and the mean, and also treats
Bayesian tolerance intervals. Tamura (1988) applies Dirichlet process methods to
auditing problems.

1. Linear Bayes estimation

The useful idea of restricting attention to a linear space of estimates in
Bayesian nonparametric problems is due to Goldstein (1975a, b). Such estimates
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may require less knowledge of the prior and be much easier to compute than
Bayes estimates without much loss of efficiency. As an example, consider the
problem of estimating a mean p = [ zdP(z) within the class of linear functions,
jt = a + Tb;X;. The Bayes solution is

i = -MA_{—n/JO + 'M“%‘-EX"’ where

E(a?)

= F and M= ————.
i B32) - ()’
Here, 02 = [12dP(z) — p? is the variance of the random distribution. This
estimate is formally identical to the Bayes estimate with the Dirichlet prior,
Theorem 1, with however a new interpretation for the parameter M. In addition,
the only information needed to be elicited from the prior are the three quantities,
E(p), E(u2) and E(02). These ideas were further developed by Zehnwirth (1985)
in treating estimation with censored data, by Poli (1985), who finds the best
linear predictor in a multivariate regression model and specializes to a Dirichlet
prior and to a normal/Wishart mixture of Dirichlets, and by Kuo (1988) in
estimating the potency curve in Bayesian bio-assay.

2. Sequential problems

A number of papers treat sequential nonparametric problems from a
Bayesian viewpoint. Hall (1976, 1977) in treating sequential search problems
with random overlook probabilities allows the distributions of the overlook proba-
bilities to be Dirichlet or a mixture of Dirichlet. Ferguson (1982) discusses k-stage
lookahead rules and modified rules in some nonparametric sequential estimation
problems with Dirichlet priors. Clayton and Berry (1985) treat the finite horizon
one-armed bandit with the unknown arm producing observations from a Dirichlet
process. In a sequential testing problem, Clayton (1985) assumes that in sampling
from F € 9P(«), the payoff if you stop at n is maz( E(X|Xq,...,Xy), v) — nc, where
v and ¢ > 0 are constants. He shows that the optimal stopping rule is bounded
if the support of « is bounded, and he conjectures that this is true even if the sup-
port of o« is unbounded. Christensen (1986) obtains a similar result for the
problem of sampling without recall from a distribution F € 9U(«) and constant
cost of observation. Betré and Schoen (1987) consider the problem of sampling
with recall and constant cost from a distribution F assumed to be a simple
homogeneous process neutral to the right.

3. Point processes

Lo (1982) considers the problem of estimation of the intensity measure ¥
of a nonhomogeneous Poisson point process based on a random sample from this
process. He shows that if the prior distribution for v is a weighted gamma
distribution §(a, B), then given a sample Ny,...,N, of n functions from this
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process, the posterior distribution of 7 is again gamma, G(e + TNy, B/ (0B + 1)).
Lo also shows that the posterior process converges weakly to the Brownian
bridge.

Another paper of Lo (1981) describes an application to shock models and
wear processes. A device is subject to shocks occurring randomly at times
according to a homogeneous Poisson point process N(#) with intensity 5. The itt
shock causes a random amount X; of damage, assumed to be i.i.d. F on [0, co).
For the prior distribution, 4 and F are chosen to be independent, with v € a
gamma distribution §(}, ), and F € D(a). In the posterior distribution based
on a single observation of N up to time T, v and F are still independent, with
7 € §A + MT), 0 + T) and F € Y a + N). This readily yields Bayes
estimates of v and F.

Johnson, Susarla and Van Ryzin (1979) present an application to the
Bellman-Harris age-dependent branching process. Each individual z born has a
random length of life A, and reproduces at death a random number €, of
offspring, where the (A, ¢ o) are iid. from Gx P. The prior distribution of G
and P are taken to be independent Dirichlet processes with parameters o; and
@y, and Bayes estimates of G and P are developed based on an observation of the
process through time T starting with one individual.
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