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Abstract. The Inspection Game is a multistage game between a customs inspector

and a smuggler, first studied by Melvin Dresher and Michael Maschler in the 1960’s.

An extension allowing the smuggler to act more than once, treated by Sakaguchi in a

special case, is solved. Also, a more natural version of Sakaguchi’s problem is solved in

the special case where the smuggler may act at each stage.

1. Introduction.

The Inspection Game is a two-person zero-sum multistage game. It was originally

proposed by Dresher [5], and treated in greater generality by Maschler [9], in the context

of checking possible treaty violations in arms control agreements. This problem may be

described as a game between an inspector and a smuggler as follows.

The basic game is played in n stages. Player I, the inspector, chooses k of the stages

in which to perform an inspection. Player II, the smuggler, may choose one of the stages

to attempt an illegal act. If Player I is inspecting when Player II acts, Player I wins 1 unit

and the game ends. If Player II acts when Player I is not inspecting, the payoff is zero.

If Player II decides not to act in any of the n stages, Player I wins an amount q between

these two values, 0 ≤ q ≤ 1. The game is zero-sum so that Player I’s winnings are Player

II’s losses. It is assumed that Player II knows k, and learns of each inspection as it is

made. If we denote this game by Γ(n, k) with 0 ≤ k ≤ n, then we may express this as a
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finite horizon multistage game with structure

Γ(n, k) =




act wait

inspect 1 Γ(n − 1, k − 1)

don’t inspect 0 Γ(n − 1, k)


 (1)

for 0 < k < n, and with boundary conditions for n ≥ 1,

Γ(n, 0) = (0) and Γ(n, n) = (q). (2)

The case q = 1 may be considered as the case where Player II is required to act at some

stage. The problem is to find the value, Vq(n, k), and the optimal strategies of the game

Γ(n, k).

Simple formulas for the value and optimal strategies were found by Dresher [5] in

the case q = 1/2 and in the case q = 1. Maschler [9] treats the general case as a non-

constant-sum game. However in the arms control model he was studying, it is reasonable

to assume the inspector may announce his mixed strategy and the other player may not.

In his model under these assumptions, both players will choose strategies optimal for the

zero-sum game based on the payoff to Player II. Maschler finds these strategies and thus

solves the Inspection Game for arbitrary 0 ≤ q ≤ 1. His result in our notation may be

stated as follows.

Theorem. (Maschler) For 0 ≤ q ≤ 1 and for 0 ≤ k ≤ n and n ≥ 1, the value of the

Inspection Game Γ(n, k) is

Vq(n, k) = q

(
1 −

(
n−1

k

)
qk∑k

j=0

(
n−k−1+j

j

)
qj

)
(3)

For 0 < k < n, the optimal mixed strategy for Player I is (Vq(n, k), 1 − Vq(n, k)) (unique

unless q = 0), and the optimal mixed strategy for Player II is (1 − Q,Q), where Q =

Vq(n, k)/Vq(n − 1, k).
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This result was obtained independently by Höpfinger [8] but a different form of the

formula for the value was obtained. This is

Vq(n, k) = q

(
1 −

(
n−1

k

)
qk∑k

j=0

(
n
j

)
qj(1 − q)k−j

)
. (4)

This equivalence of these formulas may be seen as follows. Consider a sequence of inde-

pendent Bernoulli trials with constant success probability, q. The probability of at most k

successes in a negative binomial experiment with n− k failures is equal to the probability

of at most k successes in a binomial experiment of n trials. The former probability is∑k
0

(
n−k−1+j

j

)
qj(1 − q)n−k as given by the negative binomial distribution, and the latter

is
∑k

0

(
n
j

)
qj(1 − q)n−j as given by the binomial distribution.

Thomas and Nisgav [16] treat this problem when the payoff for being caught is a

number v > 0, and q = v as well. However, by a rescaling, it may be assumed that

v = q = 1. One interpretation of such a v is as the probability of being caught when acting

during an inspection. Thomas and Nisgav also introduce the possibility of more than one

inspection team, each team having its own limited number of days on which it may act,

and having possibly different efficiencies, etc. They point out that such problems can be

solved as linear programming problems. Baston and Bostock [3] and Garnaev [7] find a

closed form of the solution for two and three inspection teams respectively.

In this paper, we treat a generalization of the basic model introduced by Sakaguchi

[14] (see also Nakai [10]) in which Player II may act more than once. As an illustration,

we may interpret this model through the following scenario. Player II has � truckloads

of toxic waste to dispose of. There is no cost for dumping a truckload of toxic waste in

the river unless he gets caught by the inspector, in which case he loses +1 each time he is

caught. Instead Player II may dispose of any truckload in a legal way at a cost of q per

truckload. However, after n days, the inspector will inspect Player I’s homebase and force

him to dispose legally of any waste found there. In the meantime, he may try to dump
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one truckload in the river each day. But the inspector only has staff enough to watch him

on k of those days.

Von Stengel [17] considers a different generalization in which Player II is allowed to act

more than once. In von Stengel’s model, the game ends the first time Player II is caught.

This provides a better model for the arms control problem. A very interesting feature of

von Stengel’s solution is that Player I’s optimal strategy does not depend on the number

� and so is also the solution to the problem when Player I is not informed of Player II’s

undetected actions. Other interesting papers in this regard are those of Diamond [4] and

Ruckle [13]. For a survey of this area, see Avenhaus et al. [1] and [2].

2. Description of the Problem.

Sakaguchi’s problem, in which Player II may act more than once, may be extended to

arbitrary 0 ≤ q ≤ 1 as follows. If we let � denote the number of times that II may act, and

n and k are as before, then, denoting this game by Γ(n, k, �), the structure may be written

Γ(n, k, �) =




act wait

inspect 1 + Γ(n − 1, k − 1, � − 1) Γ(n − 1, k − 1, �)

don’t inspect Γ(n − 1, k, �− 1) Γ(n − 1, k, �)


 (5)

for 1 ≤ k ≤ n − 1 and 1 ≤ � ≤ n − 1. The boundary conditions are

(a) Γ(n, 0, �) = (0) for 0 ≤ � ≤ n

(b) Γ(n, k, 0) = (0) for 0 ≤ k ≤ n

(c) Γ(n, n, �) = (�q) for 0 ≤ � ≤ n

(d) Γ(n, k, n) = (?) for 1 ≤ k ≤ n − 1.

(6)

In the case q = 1, it is natural to replace the question mark by k. In Sakaguchi [14], the

problem is solved in this case. (A change of location and scale and the interchange of the

roles of Players I and II is required to put his problem into the above form.) In Sakaguchi

[15], this problem is studied for both q = 1 and q = 1/2, but for some reason, the question
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mark in the fourth boundary condition is not specified. Therefore in his Theorem 2 for

the case q = 1/2, the solution he gives is just one of many possible solutions. It is the one

that corresponds to the boundary condition,

Γ(n, k, n) = (nV1/2(n, k)) for 1 ≤ k ≤ n − 1. (7)

where V1/2(n, k) is the value function of the solution for the case � = 1 and q = 1/2

displayed in (3) or (4).

Sakaguchi finds that the value of this game is � times the value when � = 1, for both

q = 1 and q = 1/2, the latter under the conjecture that all the games have completely

mixed strategies. In Lemma 1 below, we show this conjecture is true and in Theorem 2

we show that Sakaguchi’s result holds for arbitrary q when the question mark in (6) is

replaced by nVq(n, k).

However, a much more natural way of specifying the values of Γ(n, k, n) is to assume

that the cost q is always assessed for each of the � actions that is not taken. Since Player

II may take at most one action per stage, we have Γ(n, k, n + �) = �q + Γ(n, k, n) for all

� ≥ 0. Therefore we may specify the Γ(n, k, n) indirectly through the recursive equations

Γ(n, k, n) =




act wait

inspect 1 + Γ(n − 1, k − 1, n − 1) q + Γ(n − 1, k − 1, n − 1)

don’t inspect Γ(n − 1, k, n − 1) q + Γ(n − 1, k, n − 1)


 (8)

for 1 ≤ k ≤ n − 1, with boundary conditions

Γ(n, 0, n) = (0) Γ(n, n, n) = (nq). (9)

The values of these games, found in Theorem 3 below, are the most natural candidates to

replace the question mark in (6).

The case q = 1 has a close connection to the Simple Point Capture Game (SPCG) of

Ruckle [12]. The SPCG is a single-stage game in which the inspector chooses the set of
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k days on which to inspect nonsequentially from the n days and the spy similarly chooses

the set of � days at the outset on which to act. As in the Inspection Game, the payoff

is the number of times the inspector catches the spy acting. The value of the SPCG and

the Inspection Game are the same (namely k�/n, and the unique optimal strategies for

the SPCG (namely uniform) are optimal in the Inspection Game as well. The result of

Sakaguchi for the Inspection Game with q = 1 shows that the players may ignore any

information they receive along the way. A similar situation occurs in the game, Hidden

Card Goofspiel of Ross [11]. However, some of this has been noted before. The case q = 1

of the Inspection Game, Sakaguchi’s [14] generalization, Nakai’s [9] generalization in his

Section 4, and Ruckle’s SPCG are all special cases of an earlier general result of Gale [6].

3. The Generalization of Sakaguchi’s Problem.

We consider the problem of finding the solution to (5) subject to the boundary condi-

tions (6) with the question mark in (6) replaced by nVq(n, k), where Vq(n, k) is given by

(3) or (4).

To solve this problem, we first prove a lemma similar to one conjectured to be true

by Sakaguchi. This is used to show that all games Γ(n, k, �) for n ≥ 2, 1 ≤ k ≤ n − 1 and

1 ≤ � ≤ n−1, are completely mixed, that is that both players have optimal strategies that

give positive weight to both actions.

Lemma 1. For all n ≥ 2 and 1 ≤ k ≤ n, we have

Vq(n, k) − Vq(n, k − 1) ≤ 1/n.

Proof. We rewrite Vq(n, k) using (4) as

Vq(n, k) = q

∑k−1
j=0

(
n−1

j

)
qj(1 − q)k−1−j∑k

j=0

(
n
j

)
qj(1 − q)k−j

=

∑k
j=1

(
n−1
j−1

) (
1−q

q

)k−j

∑k
j=0

(
n
j

) (
1−q

q

)k−j
.
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Now writing (1 − q)/q = x and changing variable t = k − j for j, we have

Vq(n, k) =

∑n−1
t=n−k

(
n−1

t

)
xt∑n

t=n−k

(
n
t

)
xt

=
S(ρ, n − 1)

S(ρ, n)

where ρ = n − k and S(ρ, n) =
∑n

t=ρ

(
n
t

)
xt. We are to show

S(ρ, n− 1)
S(ρ, n)

− S(ρ + 1, n − 1)
S(ρ + 1, n)

≤ 1
n

for all x > 0 and ρ = 0, 1, . . . , n − 1. Writing S(ρ, n − 1) =
(
n−1

ρ

)
xρ + S(ρ + 1, n − 1) and

S(ρ, n) =
(
n
ρ

)
xρ + S(ρ + 1, n), and multiplying through by S(ρ, n)S(ρ + 1, n), we find we

are to show

n

[(
n − 1

ρ

)
xρS(ρ + 1, n) −

(
n

ρ

)
xρS(ρ + 1, n − 1)

]
≤ S(ρ, n)S(ρ + 1, n) (10)

The left-hand side of (10) is a polynomial in x with terms of the order x2ρ+1, . . . , xρ+n.

The coefficient of x2ρ+s is

n

[(
n − 1

ρ

)(
n

ρ + s

)
−
(

n

ρ

)(
n − 1
ρ + s

)]
= s

(
n

ρ

)(
n

ρ + s

)
(11)

for s = 1, . . . , n − ρ. The right-hand side of (10) is a polynomial with terms of the order

x2ρ+1, . . . , x2(n−ρ). It is sufficient to show that the coefficients (11) are all less than or

equal to the corresponding coefficients on the right side of (10). The coefficient of x2ρ+s

on the right side of (10) for s = 1, . . . , n − ρ is

s−1∑
j=0

(
n

ρ + j

)(
n

ρ + s − j

)
.

The first term cancels one term from the left, so that we are to show

(s − 1)
(

n

ρ

)(
n

ρ + s

)
≤

s−1∑
j=1

(
n

ρ + j

)(
n

ρ + s − j

)
(12)

for s = 2, . . . , n − ρ. It is straightforward to show that the ratio,
(
n
ρ

)
/
(

n
ρ+1

)
, is increasing

in ρ for 0 ≤ ρ ≤ n − 1. This implies that(
n

ρ

)(
n

ρ + s

)
<

(
n

ρ + 1

)(
n

ρ + s − 1

)
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and so on, and therefore,
(
n
ρ

)(
n

ρ+s

)
is less than each of the s − 1 terms of the sum in (12).

Thus (12) follows.

Theorem 2. Let Vq(n, k, �) denote the value of the game Γ(n, k, �). Then,

Vq(n, k, �) = �Vq(n, k) for 0 ≤ k ≤ n and 0 ≤ � ≤ n. (13)

Proof. The boundary conditions (6) give the result for k = 0, k = n, � = 0, and � = n,

for all n ≥ 0. We must show (13) for all n ≥ 2, 1 ≤ k ≤ n−1, and 1 ≤ � ≤ n−1. The case

n = 2 follows from Theorem 1. As the induction hypothesis, we assume (13) is true with n

replaced by n−1. Now consider the case n and arbitrary 1 ≤ k ≤ n−1 and 1 ≤ � ≤ n−1.

From (5) we have

Vq(n, k, �) = Value
(

α β
γ δ

)
(14)

where
α :=1 + Vq(n − 1, k − 1, � − 1)

β :=Vq(n − 1, k − 1, �)

γ :=Vq(n − 1, k, �− 1)

δ :=Vq(n − 1, k, �).

The game is completely mixed if α > β, β < δ, δ > γ, and γ < α. The first three of

these inequalities follow easily from the induction hypothesis. The last inequality may be

written using the induction hypothesis as

(� − 1)Vq(n − 1, k) < 1 + (� − 1)Vq(n − 1, k − 1). (15)

From Lemma 1, (15) holds for all 1 ≤ � ≤ n − 1 and 1 ≤ k ≤ n − 1. Thus the game is

completely mixed and (14) reduces to

Vq(n, k, �) =
αδ − βγ

α − β − γ + δ

=
(1 + (� − 1)Vq(n − 1, k − 1))�Vq(n − 1, k) − �Vq(n − 1, k − 1)(� − 1)Vq(n − 1, k)

1 + (� − 1)Vq(n − 1, k − 1) − �Vq(n − 1, k − 1) − (� − 1)Vq(n − 1, k) + �Vq(n − 1, k)
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=
�Vq(n − 1, k)

1 − Vq(n − 1, k − 1) + Vq(n − 1, k)
.

But since Vq(n, k) = Vq(n, k, 1), this same equation with � = 1 shows that the right side is

� Vq(n, k), completing the induction.

4. Solution to (8) and (9).

Theorem 3. Let v(n, k) denote the value of Γ(n, k, n). Then for 0 ≤ k ≤ n,

v(n, k) = k − pn−k+1u(n, k), (16)

where p = 1 − q and

u(n, k) =
k−1∑
j=0

(k − j)
(

n − k − 1 + j

j

)
qj (17)

For 0 < k < n, the optimal mixed strategy for Player I is (q, p) independent of k and n,

and the optimal strategy for Player II is (Q, 1−Q) where Q = v(n−1, k)−v(n−1, k −1).

Proof. Equations (8) and (9) become

v(n, k) = Value
(

1 + v(n − 1, k − 1) q + v(n − 1, k − 1)
v(n − 1, k) q + v(n − 1, k)

)
for 1 ≤ k ≤ n − 1 (18)

subject to the boundary conditions

v(n, 0) = 0 for n ≥ 1, and v(n, n) = nq for n ≥ 0. (19)

It is easy to argue directly that v(n, k− 1) ≤ v(n, k) ≤ 1 + v(n, k− 1) for 1 ≤ k ≤ n− 1, so

the game is completely mixed. Therefore Player I has the optimal mixed strategy (q, p),

independent of k and n for 1 ≤ k ≤ n − 1, and Player II has the optimal mixed strategy

shown. Equation (18) reduces to

v(n, k) = q(1 + v(n − 1, k − 1)) + pv(n − 1, k) for 1 ≤ k ≤ n − 1 (20)
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One may simplify equations (19) and (20) with the change of functions (17) from v(n, k)

to u(n, k). Equations (19) and (20) reduce to

u(n, k) = qu(n − 1, k − 1) + u(n− 1, k) for 1 ≤ k ≤ n − 1 (21)

subject to the boundary conditions

u(n, 0) = 0 for n ≥ 1, and u(n, n) = n for n ≥ 0. (22)

The solution is given by (16) for 0 ≤ k ≤ n. This is easily seen by checking that it satisfies

(21) and (22).

It is interesting that Player I’s strategy is independent of k and n provided k < n. For

example, suppose that n = � = 20, k = 1 and q = 1/2. Usually if an action can be carried

out only once, it is important not to carry it out too soon, since it gives the opponent

free rein afterward. This is the basis of the maxim “The threat is more powerful than the

execution”. But in this example, it is optimal for player I to carry out his one and only

action half the time at the very first stage out of twenty stages.

For 0 < q < 1, it is an open problem to find a nonrecursive solution to Γ(n, k, �)

subject to (5) and (6) with the question mark in (6) replaced by (16). The case q = 1 is

Sakaguchi [14] or Theorem 2.
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