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Abstract

Two players with differing amounts of money simultaneously choose an

amount to bet on an even-money win-or-lose bet. The outcomes of the bets

may be dependent and the player who has the larger amount of money after

the outcomes are decided is the winner. This game is completely analyzed.

In nearly all cases, the value exists and optimal strategies for the two players

that give weight to a finite number of bets are explicitly exhibited. In a few

situations, the value does not exist.

ZERO-SUM GAME, GENERALIZED SADDLE POINT, JEOPARDY

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 90A80

SECONDARY 90D80

0. Introduction

This paper contains a mathematical analysis of a two-person zero-sum game that

models last round betting situations occurring in certain gambling tournaments and in

the television game of Jeopardy. The game of Final Jeopardy has been analyzed in fairly

realistic detail in papers of Taylor (1994) and Gilbert and Hatcher (1994). Taylor’s analysis

covers three players and his suggested strategies are intended to work well against the

historical choices of the players in past games. The paper of Gilbert and Hatcher contains

a mathematical analysis of Final Jeopardy as a two or three person nonzero-sum game

∗ Department of Mathematics, University of California, Los Angeles, CA 90024, USA.
E-mail: tom@math.ucla.edu
∗∗ Department of Industrial Engineering, Technical University of Crete, Hania, 73100,

Greece. E-mail: costis@dssl.tuc.gr

1



(evidently a tie is almost as good as a win), and the emphasis is on finding equilibrium

points. The book of Wong (1992) contains much useful information about playing casino

tournaments in general. In most of these tournaments, the bets are made sequentially

by the players according to a predetermined order, whereas our interest is in games with

simultaneous moves. However, in some blackjack and baccarat tournaments each player is

allowed to keep the amount bet a secret at one time chosen by the player. If the advice of

Wong is followed, this time is chosen to be in the last round.

It is this situation of two players making last round bets with simultaneous moves

that is treated in this paper. It is not uncommon that the last round of a tournament

reduces essentially to a battle between the two leaders. In addition, the game-theoretic

solution of the two-person game sheds light on the problems arising when three or more

players still have a chance to win. These games are similar to the Colonel Blotto games

with continuously divisible resources and 2 outposts. In Colonel Blotto games, two players

must decide how to divide their resources between n outposts of differing values, the player

with the larger resource at an outpost winning the value of the outpost. The papers of

Gross and Wagner (1950) and Gross (1950) contain solutions to the Colonel Blotto games

for n = 2 and arbitrary resources, and for all n when the players have equal resources. In all

cases studied, the games have values, but it is unknown whether these games always have

values. For a variation of Colonel Blotto without a value, see Sion and Wolfe (1957). Last

round betting games are in spirit similar to games of timing, discussed in Karlin (1959).

Such games are played on the unit square with a payoff function that is discontinuous on

the main diagonal. There is a large literature on such games that continues today. See for

example Kimeldorf and Lang (1978), Radzik (1988), Teraoka and Nakai (1990), and Kurisu

(1992). Also similar are the Silverman games as treated for example in Heuer (1989), and

certain exchange games such as the MIX game of Garnaev (1992).

1. The Rules

The last round is modeled as follows. The game begins with Player I having an

amount X > 0 of money and Player II having an amount Y > 0. We shall assume money

is infinitely divisible and take X ≤ Y = 1 without loss of generality. Player I chooses an
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amount x to bet, where 0 ≤ x ≤ X, and simultaneously, II chooses an amount y where

0 ≤ y ≤ 1. The players are then tested and the players separately either win or lose the

amount they bet. There may be a dependence in the outcome so we let p11 denote the

probability that they both win, p00 denote the probability they both lose, p10 denote the

probability that I wins and II loses, and p01 denote the probability that I loses and II wins.

We have p00 + p10 + p01 + p11 = 1. In both Jeopardy and blackjack, there is a positive

dependence in the outcomes of the two players.

The player who has the larger amount of money after the play wins the game. If the

amounts are equal, then as we shall see, except for a few values of X, the actual definition

of the winner is immaterial. To keep things simple, we call the game a tie when the final

amounts are equal, or equivalently, we assume the winner is decided by the toss of a fair

coin. Then the probability that player I wins when I uses x and II uses y is

P (x, y) = p11I(X + x > 1 + y) + p10I(X + x > 1 − y) + p00I(X − x > 1 − y)

+
1
2

[p11I(X + x = 1 + y) + p10I(X + x = 1 − y)

+ p00I(X − x = 1 − y) + p01I(X − x = 1 + y)]

where I(A) denotes the indicator function of the set A: I(A) = 1 if the set A obtains, and

I(A) = 0 otherwise. See Figure 1. The pure strategy spaces of players I and II are denoted

by X = [0,X] and Y = [0, 1] respectively, and the game is denoted by G = (X ,Y, P ).

Since the payoff function, P (x, y), is not upper or lower semi-continuous, we are not

assured of the existence of a value for these games. Nevertheless, except for a discrete set

of values of X, the value of the game exists and there are optimal mixed strategies for

the players giving probability one to a finite set of points. After treating the special cases

p11 = 0, p00 = 0, X < 2/3 and X = 1 in Section 2, the general case is treated in Section 3.

The solution is seen to depend upon which interval of the form [ k
k+1 ,

k+1
k+2), for integer k,

contains X. Theorem 1 treats the case of k even, and Theorems 2 and 3 the case of k odd.

The value and finite optimal strategies exist in all cases except when 0 < p11 < p10 and X

is equal to one of 3/4, 5/6, . . . . In these exceptional cases, the lower and upper values are

found and seen to be distinct. When the value exists, optimal strategies are found that

3



A

B

C

F
G

H

I

x0
0

1-X X

1-X

1

y

D

E

1-2X

Figure 1. The Payoff Function, P . I chooses x, II chooses y. The Payoffs A,B, . . . , I
for the indicated regions of X × Y are given by A = p10 + p00, B = p10, C = p10 + p11,
D = p10 + (1/2)p00, E = p10 + (1/2)p11, F = (1/2)p10, G = 0, H = (1/2)(p10 + p00),
I = (1/2)(p10 + p11). The inequalities A ≥ D ≥ B, C ≥ E ≥ B, G ≤ F ≤ B, and
F ≤ max(H, I) are helpful towards establishing dominance relationships for the strategies
of the two players.

give weights in geometric proportion to a set of equally spaced points, except for at most

one endpoint.

2. Saddle Point Cases

We first treat a few special cases in which there is a saddle point. This will allow us

to assume 2/3 ≤ X < 1, p00 > 0 and p11 > 0 in the following section. Case 1 is treated

explicitly and the rest of the cases may be shown in a similar manner.

Case 1: X < 1/2. Figure 1 simplifies in this case, and the value and optimal strategies

are immediate. Indeed, for (a) 1−X < y ≤ 1 ⇒ maxx P (x, y) = p10+p00 for x < X+y−1,

(b) y = 1 −X ⇒ maxx P (x, y) = (1/2)p10 + (1/2) max(p10, p00) for x > 0 if p00 < p10 and

x = 0 if p00 ≥ p10, (c) 1 − 2X < y < 1 −X ⇒ maxx P (x, y) = p10 for x > 1 − y −X, (d)

y = 1−2X ⇒ maxx P (x, y) = (1/2)p10 for x = X, (e) 0 ≤ y < 1−2X ⇒ maxx P (x, y) = 0
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for 0 ≤ x ≤ X. The discussion implies that Player II can secure 0 by betting anything

less than 1 − 2X, i.e. that miny maxx P (x, y) = 0. On the other hand, 0 ≤ x ≤ X ⇒
miny P (x, y) = 0 for y < 1− 2X, i.e. maxx miny P (x, y) = 0 for 0 ≤ x ≤ X. Hence, this is

the case where Player II always wins by betting nothing.

The value is 0.

Anything is optimal for player I.

An optimal strategy for player II is y = 0.

Case 2: X = 1/2. To create a chance of winning, player I must bet all he has. In this

case the tie rule plays a role in the solution.

The value is min{p10, (p10 + p11)/2}.

Player I’s optimal strategy is x = 1/2.

Player II’s optimal strategy is y = 0 if p11 ≤ p10

and any y in (0, 1/2) if p11 > p10.

Case 3: 1/2 < X < 2/3. Player I may as well bet all he has.

The value is p10.

Any x in (1 −X,X] is optimal for Player I.

Any y in (2X − 1, 1 −X) is optimal for Player II.

Case 4: p11 = 0. Player II cannot gain by betting.

(X, 0) is a saddle point.

If 1/2 < X < 1, the value is p10.

Case 5: p00 = 0. Player I may as well bet all he has.

(X, 1) is a saddle point.

If 1/2 < X < 1, the value is p10.

Case 6: X = 1. In this case, there is always a saddle point occurring at one of the

corner points of the product strategy space, which corner depends on the values of the pij .

If p11 ≥ p00, then (1, 1) is a saddle point with value p10 + (p11 + p00)/2.

If 1/2 ≤ p10 + p11 ≤ p10 + p00, then (1,0) is a saddle point with value p10 + p11.
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If p10 + p11 ≤ 1/2 ≤ p10 + p00, then (0,0) is a saddle point with value 1/2.

If p10 + p11 ≤ p10 + p00 ≤ 1/2, then (0,1) is a saddle point with value p10 + p00.

3. The General Case

Throughout this section, it is assumed that 2/3 ≤ X < 1, p00 > 0 and p11 > 0. It

turns out that none of these games has a saddle point, so we must consider the mixed

extension of G(X ,Y, P ). It is simplest to take the set of finite probability distributions

over X and Y as the classes of mixed strategies of the players. For a set X , we let X ∗

denote the class of finite probability distributions over X . We may consider X as a subset

of X ∗ by identifying a point x ∈ X with the probability distribution in X ∗ giving mass 1

to the point x.

Suppose σ ∈ X ∗ is the probability distribution giving probability σi to the point xi

for i = 1, . . . ,m and suppose τ ∈ Y∗ gives mass τj to the point yj for j = 1, . . . , n. In the

usual way, we may then extend the definition of P from X × Y to all of X ∗ × Y∗ by

P (σ, τ ) =
m∑

i=1

n∑
j=1

σiτjP (xi, yj).

The mixed extension of G = (X ,Y, P ) is then G∗ = (X ∗,Y∗, P ).

The restriction to finite probability distributions over X and Y is also the strongest

in the following sense. Let X ∗∗ (resp. Y∗∗) represent any convex family of distributions

over X (resp. Y) containing all distributions degenerate at points. Then X ∗ ⊂ X ∗∗ and

Y∗ ⊂ Y∗∗. If the value exists for the mixed extension (X ∗,Y∗, P ), then it also exists for the

mixed extension (X ∗∗,Y∗∗, P ) and the values are equal. (If P is bounded as it is here, the

converse also holds. However if the probability measures are not required to be σ-additive,

an example of Baston, Bostock and Ruckle (1990) shows the converse might not hold even

if P is bounded.)

All these games may be solved using the method of block domination to reduce the

strategy spaces, X and Y, to finite sets. For a given game, G = (X ,Y, P ), a pair of subsets,

(X0,Y0) with X0 ⊆ X and Y0 ⊆ Y, is said to be a generalized saddle-point for G if

(a) for every x ∈ X , there is a σ ∈ X ∗
0 such that P (σ, y) ≥ P (x, y) for all y ∈ Y0, and

(b) for every y ∈ Y, there is a τ ∈ Y∗
0 such that P (x, τ ) ≤ P (x, y) for all x ∈ X0.
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The conditions (a) and (b) may be stated in more intuitive terms:

(a) if II is restricted to Y0, then I may restrict his attention to X0, and

(b) if I is restricted to X0, then II may restrict his attention to Y0.

The term generalized saddle-point is found in Shapley (1959). The following lemma

is well-known (see for example, Karlin (1959, vol I, Theorem 2.2.4).

Lemma 1. If (X0,Y0) is a generalized saddle point for the game (X ,Y, P ), then the

restricted game (X0,Y0, P ) has a value if and only if the original game (X ,Y, P ) has a

value, the values are equal, and any strategy optimal in the restricted game (for either

player) is also optimal in the original game.

We now define ∆ := 1 −X and consider three cases.

Case 1: The left-closed intervals, [ 23 ,
3
4 ), [ 45 ,

5
6 ), . . ..

X ∈
[

2m
2m + 1

,
2m + 1
2m + 2

)
, m = 1, 2, . . .

Take ε > 0 sufficiently small (ε ≤ 2(m+1)∆−1
m will do) and define subsets X1,m = { xρ, ρ =

0, 1, . . . ,m} ⊂ X and Y1,m = { yρ, ρ = 0, 1, . . . ,m} ⊂ Y where

x0 = 0, xρ = 1 − (2m + 1 − 2ρ)∆ ρ = 1, . . . ,m

y0 = 0, yρ = 1 − (2m + 2 − 2ρ)∆ + (m− ρ + 1)ε ρ = 1, . . . ,m.

See Figure 2.

Lemma 2. For Case 1, if Player II is restricted to Y1,m, then Player I may restrict his

attention to X1,m.

Proof: Let us assume that II is restricted to Y1,m. Then, (a) For all x ∈ [0,∆), X ∈[
2m

2m+1 ,
2m+1
2m+2

)
, m = 1, 2, . . . implies y1 > ∆ and therefore, P (x, y1) ≤ P (x0, y1), and

P (x, yj) = P (x0 , yj), j = 0, 2, . . . ,m (see Figures 1 and 2). Hence, x0 dominates all

x ∈ [0,∆). (b) For all x ∈ [∆, x1 + mε), (i) P (x, y0) ≤ P (x1, y0) (actually, P (x, y0) is

constant for x ∈ (∆, x1+mε)), (ii) The upper inequality on ε implies y1 < 2∆ and therefore

P (x, y1) = P (x1 , y1) = p10, (iii) y2 < x1 +mε+∆ implies P (x, y2) ≤ P (x1, y2), and finally,
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Figure 2. Case 1. The active pure strategies of I and II are represented by the widely
spaced dashed lines.

(iv) P (x, yj) is constant for j = 3, . . . ,m. Hence, x1 dominates all x ∈ [∆, x1 + mε). (c)

For ρ = 2, . . . ,m− 1 and for all x ∈ [xρ−1 + (m− ρ + 2)ε, xρ + (m − ρ + 1)ε) we have (i)

P (x, yj) = P (xρ, yj) for j < ρ − 1, (ii) P (x, yρ−1) ≤ P (xρ, yρ−1) (actually, P (x, yρ−1) is

constant for x ∈ (xρ−1 + (m− ρ + 2)ε, xρ + (m− ρ + 1)ε)), (iii) P (x, yρ) = P (xρ, yρ), (iv)

P (x, yρ+1) ≤ P (xρ, yρ+1), since yρ+1 < xρ + (m − ρ + 1)ε + ∆, (v) P (x, yj ) = P (xρ, yj)

for j ≥ ρ + 2. Hence, xρ dominates all x ∈ [xρ−1 + (m − ρ + 2)ε, xρ + (m − ρ + 1)ε), for

ρ = 2, . . . ,m− 1. (d) Finally, xm dominates all x ∈ [xm−1 + 2ε,X].

Lemma 3. For Case 1, if Player I is restricted to X1,m, then Player II may restrict his
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attention to Y1,m.

Proof: If I is restricted to X1,m, then y0 dominates all y ∈ [0, y1 −mε), y1 dominates all

y ∈ [y1 −mε, y2 − (m− 1)ε), yρ dominates all y ∈ (yρ − (m− ρ+ 1)ε, yρ+1 − (m− ρ)ε), for

ρ = 2, . . . ,m − 1, ym dominates all y ∈ (ym − ε, 1], and finally, (yρ + yρ+1)/2 dominates

y = yρ+1 − (m− ρ)ε for ρ = 1, . . . ,m− 1.

In view of Lemma 1, we will be interested in the restricted game (X1,m,Y1,m, P ),

which is a finite game. To describe it, we need some more notation. Let Im be the unit

matrix of dimension m + 1. Let Um (respectively, Lm) be the upper (m + 1) × (m + 1)

(resp. lower) triangular matrix with 0’s along the diagonal and 1’s everywhere above (resp.

below) the diagonal, and let Am be the (m + 1) × (m + 1) matrix with all its elements 0’s

except the (A)11 = 1. Then, Lemmas 1, 2, and 3, lead to

Lemma 4. For Case 1, the value v of G exists and is the same as the value of the matrix

game

M (1)
m := p10(Im −Am) + (p10 + p11)Lm + (p10 + p00)Um.

Any pair (σ, τ ) of optimal strategies in M
(1)
m will be optimal in G.

To obtain the value and the optimal strategies for Case 1, let r := p00/p11, so that

0 < r < ∞ from the assumptions p00 > 0 and p11 > 0. Let also R(m) :=
∑m

i=0 r
ρ. We

then have

Theorem 1. If X ∈
[

2m
2m+1 ,

2m+1
2m+2

)
, for some m = 1, 2, . . . in the game G, then, the value

exists and is

v = (p10 + p11)
R(m− 1)

p11
p10+p00

+ R(m− 1)
.

One optimal strategy of Player I is the probability vector σ on X1,m, giving weights(
p11

p10 + p00
+ R(m− 1)

)−1 (
p11

p10 + p00
, 1, . . . , rρ−1, . . . , rm−1

)

to x0, x1, . . . , xρ, . . . , xm and an optimal strategy of Player II is the probability vector τ

on Y1,m, giving weights(
p00

p10 + p11
+

R(m− 1)
rm−1

)−1 (
p00

p10 + p11
, 1, . . . , r−(ρ−1), . . . , r−(m−1)

)
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to y0, y1, . . . , yρ, . . . , ym, where (xρ, yρ), ρ = 0, 1, . . . ,m are defined by

x0 = 0, xρ = 1 − (2m + 1 − 2ρ)∆ ρ = 1, . . . ,m

y0 = 0, yρ = 1 − (2m + 2 − 2ρ)∆ + (m− ρ + 1)ε ρ = 1, . . . ,m.

Proof: The key in solving the matrix game M
(1)
m is to notice that both players possess

equalizing strategies. If player I uses σ = (σ0, σ1, . . . , σm), and if (M (1)
m )· j denotes the j-th

column of M (1)
m , then the system

σ (M (1)
m )· j = σ (M (1)

m )· j+1 j = 0, . . . ,m− 1

has a unique probability distribution as a solution. This satisfies

σρ =
p10 + p00

p11
rρ−1σ0 ρ = 1, . . . ,m

from which the result follows. Similar arguments give the solution for II.

Case 2: The open intervals (3
4 ,

4
5 ), (5

6 ,
6
7 ), . . ..

X ∈
(

2m + 1
2m + 2

,
2m + 2
2m + 3

)
, m = 1, 2, . . .

Take ε > 0 sufficiently small (ε < 1 − 2(m + 1)∆ will do) and define subsets X2,m =

{xρ, ρ = 0, 1, . . . ,m} ⊂ X and Y2,m = {yρ, ρ = 0, 1, . . . ,m} ⊂ Y by

xm = X, xρ = 1 − (2m + 1 − 2ρ)∆ − ε ρ = 0, . . . ,m− 1

y0 = ∆ − ε, yρ = 1 − (2m + 2 − 2ρ)∆ + ε ρ = 1, . . . ,m.

See Figure 3.

Lemma 5. For Case 2, if Player II is restricted to Y2,m, then Player I may also restrict

his attention to X2,m.

Proof: If II is restricted to Y2,m, then x0 dominates all x ∈ [0, 2∆ − ε), x1 dominates all

x ∈ [2∆ − ε, x1 + ε), xρ dominates all x ∈ (xρ−1 + ε, xρ + ε), for ρ = 1, . . . ,m − 1, xm

dominates all x ∈ (xm−1 + ε,X], and finally, (P (xρ, y) + P (xρ+1, y))/2 = P (xρ + ε, y), for

ρ = 1, . . . ,m− 1, y ∈ Y2,m.
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xm–2=1–5∆–ε
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(l3): –x+∆

∆ x
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Figure 3. Case 2. The active pure strategies of I and II are represented by the widely
spaced dashed lines.

Lemma 6. For Case 2, if Player I is restricted to X2,m, then Player II may also restrict

his attention to Y2,m.

Proof: If I is restricted to X2,m, then y0 dominates all y ∈ [0, y1 − 2ε), yρ dominates all

y ∈ (yρ − 2ε, yρ+1 − 2ε), for ρ = 1, . . . ,m− 1, ym dominates all y ∈ [ym − 2ε, 1], and finally,

(P (x, yρ−1) + P (x, yρ))/2 = P (x, yρ − 2ε), for ρ = 1, . . . ,m− 1, x ∈ X2,m.

Lemmas 1, 5, and 6, lead to

Lemma 7. For Case 2, the value v of G exists and is the same as the value of the matrix
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game

M (2)
m := p10Im + (p10 + p11)Lm + (p10 + p00)Um.

Any pair (σ, τ ) of optimal strategies in M
(2)
m will be optimal in G.

Theorem 2. If X ∈
(

2m+1
2m+2 ,

2m+2
2m+3

)
, for somem = 1, 2, . . ., in the game G, then, the value

exists and is

v = p10 + p11 −
p11

R(m)
.

An optimal strategy of Player I is the probability vector σ on X2,m, giving weights

1
R(m)

(1, r, . . . , rm)

to x0, x1, . . . , xm and an optimal strategy of Player II is the probability vector τ on Y2,m,

giving weights
1

R(m)
(
rm, rm−1 , . . . , r, 1

)

to y0, y1, . . . , ym, where (xρ, yρ), ρ = 0, 1, . . . ,m are defined by

xm = X, xρ = 1 − (2m + 1 − 2ρ)∆ − ε ρ = 0, . . . ,m− 1

y0 = ∆ − ε, yρ = 1 − (2m + 2 − 2ρ)∆ + ε ρ = 1, . . . ,m.

The proof follows the lines of the proof of Theorem 1 and is omitted.

Case 3: The remaining points 3
4 ,

5
6 , . . ..

X =
2m + 1
2m + 2

m = 1, 2, . . .

Subcase 3a: p11 ≥ p10.

The situation for this subcase is similar to that of Case 2, with a slight difference in the

strategy spaces of the restricted game. To be precise, the reduced strategy spaces X3a,m

of Player I and Y3a,m of Player II will be given now by

xm = X, xρ = 1 − (2m + 1 − 2ρ)∆ ρ = 0, . . . ,m− 1

y0 = ∆ − ε, yρ = 1 − (2m + 2 − 2ρ)∆ + ε ρ = 1, . . . ,m.
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Take ε < ∆. Then, assertions identical to those of Lemmas 5 and 6 can be made, the only

difference now being that in the proof of the result corresponding to Lemma 6, one has

to replace 2ε with ε. The corresponding matrix game is the same as that of Case 2. For

this subcase then, the value of the game P (x, y) and the optimal strategies are exactly as

described in Theorem 2.

Subcase 3b: p11 < p10.

For this subcase the value of P (x, y) does not exist for m ≥ 1, when r is properly defined

and non-zero. We show this by showing that the lower value, v, and upper value, v, of the

game are different,

v = sup
σ∈X∗

inf
y∈Y

P (σ, y) < v = inf
τ∈Y∗

sup
x∈X

P (x, τ ).

Let M
(3l)
m denote the matrix game given by

M (3l)
m := p10Im + (1/2)(p11 − p10)Am + (p10 + p11)Lm + (p10 + p00)Um.

Then we have the following

Lemma 8. For Case 3b, v = val(M (3l)
m ) m = 1, 2, . . .

Proof: To evaluate v, we may as well assume that player I announces his strategy σ to

player II, before the latter makes his move. But then, successive dominations leave as

active strategy spaces

X (l)
3,m := {∆, 3∆, . . . , (2m + 1)∆}

for player I, and

Y(l)
3,m :=

m−1⋃
ρ=0

(1 − 2(m− ρ)∆, 1 − 2(m− ρ)∆ + ε) ∪ {0}

for player II. It is easily checked then that the game reduces to the matrix game M
(3l)
m .

We now define the matrix game
(
M

(3u)
m i,j

)
i=1,...,2m+1 j=1,...,2m+2

in the following

way.

M (3u)
m i,j =




p10 + p11 if i > j
p10 + p00 if i < j − 1
p10 if i = j − 1
0 if i = j = 1
p10 + 1

2
p11 if i = j = 2m + 1

p10 if i = j = 2, . . . , 2m.
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We may then state

Lemma 9. For Case 3b, v = val(M (3u)
m ) m = 1, 2, . . ..

Proof: We may assume that player II announces his mixed strategy τ first. Then, suc-

cessive simplifications will reduce the strategy spaces to

X (u)
3,m :=

m−1⋃
ρ=0

[
((2ρ + 1)∆ − ε, (2ρ + 1)∆) ∪ ((2ρ + 1)∆, (2ρ + 1)∆ + ε)

∪ {(2m + 1)∆}
]

and

Y(u)
3,m :=

m⋃
ρ=0

[
{1 − 2(m + 1 − ρ)∆}∪

(1 − 2(m + 1 − ρ)∆ + (m− ρ)ε, 1 − 2(m + 1 − ρ)∆ + (m− ρ + 1)ε)
]
.

Now, the reduced strategy space game can be further simplified to produce M
(3u)
m , which

gives the result.

Lemma 10. For Case 3b and for m ≥ 1, v > v.

Proof: Take ε > 0 sufficiently small (ε < p10−p11
2(p10+p11+2p00)

will do) and suppose that, when

playing the game M
(3u)
m , Player I uses the following, possibly suboptimal, mixed strategy:

With probability wi, i = 0, . . . ,m − 1, he chooses the row pair (2i + 1, 2i + 2) and with

probability wm he chooses the row 2m + 1, wi ≥ 0, i = 0, . . . ,m,
∑m

i=0 wi = 1. Then,

given that the pair (2i+1, 2i+2) has been chosen, i = 0, . . . ,m−1, he chooses the first row

of the pair with probability 1
2 −I(i = 0)ε and the second row with probability 1

2 +I(i = 0)ε,

where I is the indicator function. When playing in this manner, I cannot achieve a payoff

greater than val(Nm), where the matrix game (Nm i,j)i=0,...,m j=1,...,2m+2 is defined in

the following way

Nm i,j =




p10 + p11 if j ≤ 2i
p10 + p00 if j ≥ 2i + 4
p10 if j = 2i + 2
p10+p11

2
+ ε(p10 + p11) if i = 0, j = 1

p10 + 1
2p00 − εp00 if i = 0, j = 3

p10 + 1
2p11 if i > 0, j = 2i + 1

p10 + 1
2p00 if i > 0, j = 2i + 3.

14



Hence,

val(Nm) ≤ val(M (3u)
m ) = v.

But then, for this ε , column 2 of Nm is dominated by column 1, column 3 is dominated

by the mixture (1/2)column 1 + (1/2)column 4, and, if m ≥ 2, then, columns 2ρ + 1, ρ =

2, . . . , m are equal to the mixture (1/2)column 2ρ + (1/2)column 2ρ + 2, ρ = 2, . . . , m.

So, if we let

M (3m)
m (ε) := M (3l)

m + ε(p10 + p11)Am

we conclude that

val(Nm) = val(M (3m)
m (ε))

and hence we get

val(M (3m)
m (ε)) ≤ v.

Now, for r well defined and strictly positive, one may evaluate the value function in this

equation (in a way similar to that of Theorem 1) and by taking its derivative show that it

is strictly increasing in ε. Hence,

val(M (3l)
m ) < val(M (3m)

m (ε)).

But now, Lemma 8 gives the result.

We summarize the discussion of Case 3 with the following.

Theorem 3. Case 3a: If X = 2m+1
2m+2 for some m = 1, 2, . . . and p11 ≥ p10 in the game G,

then, for (xρ, yρ), ρ = 1, . . . ,m, as found in X3a,m and Y3a,m, we have the conclusion of

Theorem 2.

Case 3b: If X = 2m+1
2m+2 for some m = 1, 2, . . . and p11 < p10 in the game G, then, the value

of G does not exist.

Remark. The only cases affected by the choice of the tie rule are Case 2 of Section

2, Case 6 of Section 2 when the saddle point is (0,0) or (1,1), and Case 3 of Section 3

when the value does not exist (Subcase 3b). If the lack of a value is disturbing, it can

be avoided by redefining the payoff when there is a tie. Simply call the game a win for

15



Player I (resp. Player II) when there is a tie. Then the payoff function P (x, y) becomes

upper (resp. lower) semi-continuous, and hence the value of (X ,Y, P ) exists by a theorem

of K. Fan (1953). (See for example Ferguson (1967) Theorem 2.9.2, or Parthasarathy and

Raghavan (1971) Theorem 5.3.5).

If Player I wins all ties, then for X in [2/3, 3/4), [4/5, 5/6), . . . , the value as found in

Theorem 1 holds, while for X in [3/4, 4/5), [5/6, 6/7), . . . , the value as found in Theorem

2 holds. If Player II wins all ties, then when X is in (2/3, 3/4], (4/5, 5/6], . . . , the value

as found in Theorem 1 holds, while for X in (3/4, 4/5], (5/6, 6/7], . . . , the value as found

in Theorem 2 holds. (The optimal strategies may differ.)
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