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Abstract: The optimal stopping problem of maximizing the probability of stop-
ping on the last success of a finite sequence of independent Bernoulli trials has
been studied by Hill and Krengel (1992), Hsiau and Yang (2000) and Bruss (2000).
The optimal stopping rule of Bruss stops when the sum of the odds of future suc-
cesses is less than one. This Sum-the-Odds Theorem is extended in several ways.
First, an infinite number of Bernoulli trials is allowed. Second, the payoff for not
stopping is allowed to be different from the payoff of stopping on a success that is
not the last success. Third, the Bernoulli variables are allowed to be dependent.
Fourth, the model is generalized to allow at each stage other dependent random
variables to be observed that may influence the assessment of the probability of
success at future stages. Finally, application is made to a game of Sakaguchi
(1984) in which two players vie for predicting the last success, but in which one
of the players is given priority of acting first.

The author dedicates this paper to the memory of Professor Minoru Sakaguchi (1926-
2009) with great respect for his many contributions to the fields of optimal stopping and
game theory that have inspired generations of students and scholars.

1. Description of the Problem. Fix a positive integer n, and let X1, X5,..., X,
be Bernoulli random variables. The X; are observed sequentially. The problem is to find
a stopping rule N to maximize the probability of stopping at the last success. In Hill
and Krengel (1992), Hsiau and Yang (2000) and Bruss (2000), the X; are taken to be

independent. Here we investigate the problem for dependent X;.

Suppose that the X; are independent, and let p; = P(X; = 1). The optimal stopping
rule of Bruss (2000) is simply

N* =min{k > 1: X} =1 and Z 1pi <1} (1)
i=kt1 - P

(If pi = 1, pi/(1—p;) is taken to be +00.) In other words, stop at the first success (X = 1)
for which the sum of the odds of success for future X; is less than or equal to 1. If the
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sum of the odds is equal to 1, we are actually indifferent between stopping and continuing.
This result is referred to as the Sum-the-Odds Theorem. The Classical Secretary Problem
occurs if p; = 1/i for 1 = 1,...,n, and in this case it is known that k/n — e~!, where the
optimal rule selects the first success after stage k. More remarkable, in Hill and Krengel
(1992) and in Bruss (2003), it is seen that the optimal probability of stopping on the last
success is at least e”! whatever be the values of the p;, provided that the sum of the odds
is at least 1 (Bruss) or that the probability of at least one success is 1 (Hill and Krengel).
See also Bruss and Paindaveine (2000). The paper of Tamaki, Wang and Kurushima
(2008) contains an extension to allow a random horizon, whereas Bruss and Louchard
(2009) propose a model for unknown odds and study the impact of sequential estimation
in the corresponding odds algorithm. Newer developments surrounding the Sum-the-Odds
Theorem, including the notion of multiplicative odds studied by Tamaki (2010) as well
as multiple selection chances (Ano et al. (2010)) are summarized in Dendievel (2013).
A related problem of stopping in continuous time, called the last arrival problem, has a
fascinating solution presented by Bruss and Yor (2012).

There are two small improvements one may make on the original Sum-the-Odds The-
orem. First, we may set the payoff for not stopping to be different from the payoff of
stopping on a success that is not the last success. For the classical secretary problem, this
generalization is due to Sakaguchi (1984). Let w represent the payoff for not stopping. If
w > 1, it is clear that it is optimal never to stop. So for simplicity, we take w < 1, though
w may be allowed to be negative provided it is forbidden to stop on a failure.

Secondly, we may allow an infinite number of Bernoulli variables. The same rule (1)
is optimal if n is replaced by oco. However, with an infinite number of X;, it may happen
that there is no last X; = 1. By the Borel-Cantelli Lemma, this happens with independent
X; if and only if > % p; = co. In this case the sum of the odds is infinite so that the rule
N* never stops and the payoff is assumed in that case to be w. If 327" p; < oo, the rule
N* eventually stops, and is optimal.

With both these features added to the problem, the optimal stopping rule in the case
Y7 pi < oo becomes

N* =min{k >1: X}, =1 and g Pi <1-—w}. (2)
‘ 1 —p;
1=k+1
This result follows from the main theorem below. If 3" p; = oo, the optimal rule is

trivial, namely: if w > 0, one never stops, and the payoff is w; if w < 0, one might as well
stop at the first success, and the payoff is zero.

The objective of this paper is to extend this result to the case where the X; are
dependent. In addition, we generalize the problem to allow more information to be given
to the decision maker at each stage. At stage ¢, in addition to observing X;, the decision
maker observes other random variables that may influence his assessment of the probability
of success at future stages.

Hsiau and Yang (2002) explore the problem of maximizing the probability of stop-
ping on the last success when the observations form a Markov chain of Bernoulli random
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variables. The problem is solved completely when the chain is homogeneous and in some
nonhomogeneous cases as well. The method of derivation differs from the method given
here, and some of their results are not obtainable from the general theorem given here.

2. A General Model for Best Choice Problems. The method we use to solve the
problem is as follows. First we modify the problem, as was done by Dynkin (1963) in his
treatment of the secretary problem, by not allowing stopping on a failure. This seemingly
innocuous modification changes the secretary problem into a monotone stopping problem.
Then we may apply a simple result that gives conditions for the one-stage look-ahead rule
to be optimal in a monotone problem. See for example Chow, Robbins and Siegmund

(1971) or Ferguson (2006).

When stopping on failures is forbidden, we must change the notion of a “stage”. A
stage is defined to contain all the observations up to and including the next success, if
any. We model this as follows. For : = 1,2,..., let Z; denote the set of random variables
observed after success 1 — 1 up to and including success 7. If there are less than 1 successes,
we let Z; = 0, where 0 is a special absorbing state. Thus we treat the following general
model.

Let Zy,Z5,... be a stochastic process on an arbitrary space with an absorbing state
called 0. We make the assumption that with probability one the process will eventually
be absorbed at 0. We observe the process sequentially and we wish to predict one stage in
advance when the state 0 will first be hit. If we predict correctly, we win 1, if we predict
incorrectly we win nothing, and if the process hits 0 before we predict, we win w, where
w < 1. This is a stopping rule problem in which stopping at stage n yields the payoff

YV, =wl(Z,=0)+1(Z, #0)P(Zpnt1 =0|Gn) forn=12...

Yo =w

(3)

where I(A) represents the indicator function of the event A and G, = o(Z4,...,Z,), the
o-field generated by Zy,...,Z,. The assignment Y., = w means that if we never stop, we
win w. To find the one-stage look-ahead rule (the 1-sla), we evaluate

E(Ynt1]Gn) = wP(Znt1 = 0]Gn) +P(Znt1 # 0, Znyo = 0(Gy) (4)

The 1-sla calls for stopping at stage n if V,, > E(Y,41]G,). On the set {Z,, = 0}, this
reduces to w > w which is always true. On the set {Z,, # 0}, this reduces to

(1 = w)P(Zny1 =0|Gn) > P(Zpt1 # 0, Zny2 = 0|Gn) (5)
Therefore the 1-sla is

P(Zn_H 7§ 0, Zn+2 = 0|gn)
P(Zn-‘rl = 0|gn)

If P(Zp41 = 0|Gn) = 0 on {Z,, # 0}, then it is a mistake to stop at n since we can do at
least as well by continuing one more step. Therefore in this and subsequent formulae, we

Ny =min{n:Z, =0or (Z, # 0 and

<l-w)} (6
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take the ratio in (6) to be 400 when P(Z,41 = 0|G,) = 0, even if the numerator is zero as
well.

The problem is said to be monotone if, when the 1-sla calls for stopping at any stage,
then it will continue to call for stopping at all future stages no matter what the future
observations turn out to be. Specifically, the problem is monotone if

Al C Ay CA3C-++  as. (7)

where for all n, A, = {Y,, > E(Y,41|G,)}. From this we see that a sufficient condition for
the problem to be monotone is

P(Zn_H 7§ 0, Zn+2 = 0|gn)
P(Zn-‘rl = 0|gn)

is nonincreasing in n a.s. (8)

One of the basic theorems in the theory of optimal stopping gives conditions under
which the 1-sla is optimal for monotone stopping rule problems. In the present context, we
may use the result that for a monotone stopping problem with observations Zy, Z,, ... and
payoff functions, Y7,Y3,..., Y., the 1-sla is optimal if sup,, |Y,| has finite expectation and
limp 00 ¥ = Yoo a.s. (See the electronic text of Ferguson (2006), Chapter 5, Theorem
2 and its Corollary.) In the problem we are considering, |Y,| is bounded by 1 + |w|, and
lim, o ¥V, =w = Y a.s., since we are assuming that the process is absorbed at zero with
probability one. Thus,

Theorem 1. Suppose that the process Zy,Z,,... has an absorbing state, 0, such that
P(Z, is absorbed at 0) = 1. Suppose the stopping problem with reward sequence (3)
satisfies (8). Then the 1-sla (6) is optimal.

3. Application to the Sum-the-Odds Theorem. We return to the original
problem of stopping on the last success of a sequence of possibly dependent Bernoulli trials,
X1, X2,.... We model the information given to the decision maker through an increasing
sequence of o-fields, Fy, Fy, F3, ..., and allow him to use a stopping rule adapted to this
sequence. We assume that for every j the event {X; = 1} is in F;. In the formulation of
Section 2, if the nth success occurs at stage k, then G, = Fj.

The problem for the theorem of Bruss deals with the special case where the X; are
independent and F; is equal to o(Xy,...,X;). This means that nothing other than the
X;’s are observed.

Let us find the 1-stage look-ahead rule for the dependent case with the Sakaguchi
extension. Suppose we are at stage k and that X; = 1. If we stop at this stage, the
probability we have selected the last success is

Vi = P(there are no successes after stage k |Fy)

9
:P(Xk+1:Xk+2::0|fk) ()
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This is the denominator of the ratio in (8). If we continue and stop at the next j > k for
which X; =1, if any, our expected return is W} + wV;, where

W} = P(there is exactly one success after stage k |Fy)

o0

10
- Z P(Xk+1:"':Xj_1:O,ijl,Xj+1 :X]+2::0|fk), ( )
j=k+1
the numerator of the ratio in (8). Thus, the 1-sla is
1%
N1:min{k21:Xk:1and7k<1—w}. (11)
k

The problem is monotone if the following condition is satisfied: If the 1-sla calls for
stopping at some stage j with X; = 1, then at any future stage k with X = 1 the 1-sla
will also call for stopping no matter what else is observed (a.s.). This means that if X; =1
and W;/V; < 1—w, then at the next k for which X} = 1, we will a.s. have W} /V} <1—w.

In particular, the problem is monotone if

W
—F s as. nonincreasing in k. (12)
k

For the purposes of most applications, it will suffice to check condition (12). Only in special
cases, as in Section 5, will it be useful to take advantage of the weaker condition of the
previous paragraph. The following corollary now follows immediately from Theorem 1.

Corollary 1. Suppose the Bernoulli variables X1, X5, ... satisfy the condition that there
are a finite number of successes with probability one. Let Fy,Fs,... be an increasing
sequence of o-fields such that {X; = 1} is in F; for all j. Then among stopping rules
adapted to the sequence {F;}, the rule Ny of (11) is an optimal stopping rule provided
condition (12) is satisfied.

This may be considered as a Sum-the-Odds Theorem in the sense that the ratio,
Wi /Vi in (11), may be written as Z;ik+1 Pji/(1 — Pji), where

Pir =P(X; =1|1Fie,Xpg1 = =X,01 =0, X;51 = Xj42=---=0).
It is easy to see that this corollary implies the theorem of Bruss. In the theorem

of Bruss, the X; are independent and F; = o(Xy,...,X;). So the conditioning in the
definition of Pj; may be ignored, and Pj; = p;. Then, assuming Y ., p; < 0o, we have

Wi Z Dj
LR o ' (13
Vi Py 1 —p;



so that in this case, Ny = N* of (2). We see from this that the W} /V} are non-random
and nonincreasing, so that (12) is satisfied. Thus the problem is monotone and the 1-sla,
N*, is optimal. This proves the result of Bruss in the infinite horizon case, and contains
the Sakaguchi extension.

4. Full-Information Best-Choice Problems. In full-information best-choice
problems, independent random variables, Y7,Y5, ..., with known continuous distribution
functions, Fi(y), F2(y), ..., respectively, are observed sequentially. It is desired to choose a
stopping rule that maximizes the probability of stopping on the largest observation. By
the Kolmogorov zero-one law, the probability that there is a largest observation is either
zero or one. If there is no largest observation, then the task is impossible. Therefore we
assume that with probability one there is a largest observation.

Let My = max{Y7,...,Y;} be the maximum of the first k observations. The Bernoulli
variables of the preceding section are therefore Xy, Xs, ..., where Xy = I(Yy = My). The
problem is to stop on the last success, that is, the last record value.

In (9) and (10), the sigma-field F} is the sigma-field generated by the variables,
Yi,..., Y. We may compute

Vi = ﬁ Fi(My) (14)
i=k+1
and ‘
Wi= ) [H Fi(Mk)] /oo I Ew| dE) (15)
j=k+1 Li=k+1 My | =541

We may therefore write

= [T Ao an TTRGw. (16)

It is easy to see that W} /Vj is a.s. nonincreasing. The first term of the sum on the right is
never negative, so removing it does not increase the sum. M}, is nondecreasing a.s. so the
range of the integral never increases. Finally, the term, Hloi] Fi(My) is a.s. nondecreasing
in k, so its reciprocal is a.s. nonincreasing. Hence the 1-sla, Ny of (11), is optimal.

Theorem 2. For the full-information best-choice problem with independent observations,
the one-stage look-ahead rule is optimal.

4.1 The full-information best-choice problem with i.i.d. observations. As an
example, consider the problem, solved in Gilbert and Mosteller (1966), when there are a
finite number of independent observations having the same continuous distribution, which
may be taken without loss of generality to be the uniform distribution on the interval (0,1),
Fj(y) =y for 0 < y <1 and for all j. Let n denote the number of observations.
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Equation (16) becomes

Wi a /1 _; 1
_ E n=J Jy—
Vi M yM,?‘J“

j=k+1
" (17)
-y 1 (1— Mot 1
- s k n—j+1
PRl 1 My

Therefore, the optimal rule of (11) may be written

_ a 1 1
Ny =min{k > 1:Y; = M} and j:zk;ln_j_}_l (M:_j+1 —1) <1-—w}. (18)

Gilbert and Mosteller, under the condition that w = 0, state the optimal rule in a
different form: Stop at the first k& for which Y, = M} and My > b,_, where by = 0 and
for m > 1, b, is the root, b, of the equation

O ICRR E

J=1

between 0 and 1. (Note: Gilbert and Mosteller use the notation b,,4+1 for this root.) Here
m represents the number of observations remaining; if your present observation is a record
value, then you should stop if and only if it is greater than b,,.

When the optimal rule (18) is put into this form, it becomes: If your present obser-
vation is a record value and if there are m observations remaining, then you should stop if
it is greater than b,,, where b,, is the root, b, of the equation

é%(%q):pw. (20)

This is a somewhat simpler equation than (19), but these two equations must be equivalent
since they give the same optimal strategy. Perhaps the simplest way to check they are the
same is to replace 1/b in both equations by z, note that the left sides are equal at z = 1
and that their derivatives with respect to a are both equal to (2™ —1)/(z—1) = 27;51 't

4.2 The full-information best-choice problem with batch arrivals. As an
example in which the variables have different distributions, suppose that for ¢+ = 1,2,...,
Y; has the beta distribution with distribution function and density

Fi(y) = yei and  fi(y) = ez‘yei_l for 0 <y < 1, (21)

where 6,6, ... are given positive numbers. We assume Zfo #; < oo so that from the
Borel-Cantelli Lemma, there will be a finite number of record values with probability one.
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This example provides an extension of the no-information best-choice problem with
batch arrivals of Hsiau and Yang (2000) to the full-information case. In this problem,
candidates arrive in batches, with ¢; > 1 candidates arriving on day ¢ for : = 1,...,n, with
n finite. All candidates arriving on day ¢ are interviewed together, and the best among
them may be considered as the observation for day 7. Each candidate has a value chosen
i.i.d. from a known continuous distribution, which may be taken without loss of generality
to be the uniform distribution on (0,1). The distribution of the observation, Y; for the ith
day, is the distribution of the maximum of a sample of size ¢; from the uniform distribution

n (0,1). The leads to the beta distribution given in (21) with §; = ¢; fori =1,....n

Let us find the optimal rule of (11) for the problem with distributions (21). Let
8j = Zloi] 6;. From (16),

o0

W 1 1
Vi Z/ 5 Ml
R =k T M j=k4+1 "7 k
oo M—Sj 1 (22)
e
j=kp1 i
so the optimal rule is, similar to (18),
M, % —1
Ny =min{k > 1:Y; = M} and Z 7<1—w}. (23)
55
J=k+1 J

This stopping rule may also be described in a manner analogous to (20) as follows. If
at stage k the present observation, Yy, is a record value, then stop if Yi(= My) is greater
than ¢, where ¢j is the unique root, ¢, of the equation

i i(i—1>:1—w, (24)

similar to (20). Equation (19) has no such simple analog for this problem.

5. Sum-the-Odds Theorem: Positive Dependence. In the positive dependent
case, an observation of a success (resp. failure) on a trial increases the probability of
success (resp. failure) on future trials. To illustrate the difficulties that arise with positive
dependence, consider the problem where the conditional distribution of Xy, ..., X, given p
are 1.i.d. Bernoulli(p), and the prior distribution of p is the beta distribution, Be(a, 3). As
is well known, the posterior distribution after observing X, ..., X} is Be(a+Sk, B+k—Sk),

where S = Zf X, is the number of successes in the first k trials.

Let us compute Wy /V} first for & = 0. We find

_ w_ Tle+8) T(@T(B+n) _ T(a+8)T(5+n)
Vo=BU =P = 5003 Ta+ftn)  T(HT(a+i+n)

(25)
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and

Wy = E(np(l _ p)n—l) _ nr(a + 6) ) F(Oz + 1)F(/6 +n— 1) . naf(a + ﬂ)r(/@ +n— 1)

T'(a)T(3) Tla+p+n)  T(BT(a+p+n) 20)
Therefore,
Wo no
Vo iAo T (27)

It follows that for arbitrary k < n,

Wi _ (n —k)(a+ Sk)
Vi n+p—-Sy—1°

(28)

The 1-sla is
(n —k)(a + Sk)

Ny =min{k : X =1 and
1 = min{ & an S

<1}, (29)

In general, the 1-sla is not monotone because, even though Wy /V}. decreases with each
failure, it may increase with a success. We now search for conditions under which W3 /Vy
decreases with a success. If W /Vi > 1 (and X} = 1), the 1-sla calls for continuing so it is
optimal to continue. So we may assume that W; /V; < 1 and find a condition under which
Wit1/Vig1r <1 when Xj1q = 1. From (28) we may write the inequality W}, /Vi < 1 as

(n—k)a+Sy) <n+3-5;,—1 (30)
and we seek conditions under which
(n—k—1)a+ Sk +1)<n+p—S,—2. (31)
Using (30), we have
n—k—1)(a+Sk+1)=n—Fk)a+Sk)+(n—k)—(a+ Sk) —1
<(n+pB-Sr—1)+(n—k)—(a+ Sk — 1.

Thus (31) is satisfied if
n—k<a+4+S;. (33)

We may conclude that the 1-sla acts optimally if, at the first k& for which X} = 1 and (30)
is satisfied, (33) is also satisfied. In particular, if & > n — 2, the 1-sla is optimal.

As an example, suppose n = 12, @ = 2 and 3 = 2. Then

(12 =R+ 5) 1}. (34)

Ny =min{k : X} =1 and S 1 <

Suppose seven failures are followed by a success, so that £ = 8, Sg = 1 and Xg = 1.
Then Wy /Vg = 12/12 = 1, so that the 1-sla is indifferent between stopping and continuing.
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Yet if Xg = 1, then Wy/Vy = 12/11 > 1 and it is strictly optimal to take another
observation. Thus the 1-sla can be improved. (To be more precise, we should take § = 2+¢;
then for sufficiently small positive e, the 1-sla calls for stopping at stage k (it is no longer
indifferent), while the improved value of continuing has not changed significantly.)

It is not hard to show that for any other sequence of successes and failures in this
example the 1-sla acts optimally.

6. Sum-the-Odds Theorem: Negative Dependence. To illustrate the problems
that arise with negative dependence, consider the case where n balls are drawn without
replacement from an urn containing a red balls and b blue balls, where a4+ b > n. We wish
to find a stopping rule to maximize the probability of stopping on the last red ball drawn.
So we take X; = I{ith draw is red}. Let a; and b; denote the number of red and black
balls respectively remaining after k& balls have been observed, starting with ap = a and
bop = b. If by < n — k at stage k, then there is bound to be another red in the remaining
n — k draws, so one should not stop. Assuming by > n — k, Vi and W) may be computed
using the hypergeometric distribution.

Vi, = P{the next (n — k) draws are blue|ag,bs.} = % (35)
k k

and

Wi = P{1 red and (n — k — 1) blue|ay, by} = (“’“) <” _bk ) (36)

from which we may compute
% _ag(n —Fk)
Vi bp—n+k+1

(37)

We now show that Wy /V}, is almost surely decreasing in k. If Xj11 = 0, then Wiy /Viyr =
ar(n—k—1)/(br—n—+k+1) which is smaller than W}, /Vi. If Xpyy = 1, then Wiiq /Vigr =
(ax — 1)(n —k —1)/(br —n + k + 2) which is also smaller than W} /V;. Thus the 1-sla is
optimal. It is the stopping rule

Ny =min{k <n:Xp=1and (ar + 1)(n — k) < b + 1}. (38)

This result should be true in greater generality, but there seems to be many ways to
try to extend it. One way is to assume that negative dependence arises in the following way.
The probabilities pi are determined by numbers a and b, and by two sequences aq, ..., ay,
and (3, ..., [, not necessarily integers. We assume the urn has initially a red and b blue
balls. On the appearance of the jth red ball (resp. jth blue ball), a; red balls (resp. 3,
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blue balls) are removed from the urn. We assume that a > > 7 a; and b > Y 3;. It can
be shown that if maxa; < minf;, then the 1-sla is optimal. The trouble with this result
is that the model is somewhat artificial, and that the whole result should hold in greater
generality.

If maxa; > min 3}, then the 1-sla may not be optimal. As an example, suppose all
B; = 0 and all o; = 0 except a2 = a. Let p =a/(a+b) and g =1— p. Then Vi = ¢" and
Wo = npg"~'. Assuming the possibility of stopping at stage 0 (with X = 1), the 1-sla calls
for stopping if Wy < Vp, or equivalently if p < n/(n +1). Yet if we observe X; = 1, then
Vi=q¢" 'and Wy = p+pg+pg>+---+pg"" % =1—¢" !, and we find that the 1-sla still
calls for stopping if and only if Wi < Vi, or equivalently, if ¢"~' > 1/2. If p =n/(n + 1)
or slightly less, the 1-sla calls for stopping at the initial stage, yet ¢"~!' = (n/(n + 1))"~!
which for large n is close to e™! < 1/2 so for large n (n > 5 suffices) the 1-sla calls for
continuing. So the 1-sla is not optimal.

7. On a Stopping Game of Sakaguchi. Let X1, X5,... be a sequence of indepen-
dent Bernoulli random variables and let p; = P(X; = 1) be the probability of success. We
assume Y.~ p; < oo so that with probability one there are a finite number of successes.
For simplicity, we assume that p; < 1 for all 7. Two players sequentially observe the X; and
vie with each other to predict the last success. As each X; is observed, Player I is given
priority whether or not to predict the present observation as the last success. If Player
I chooses not to make the prediction, then Player IT is given the option. It is assumed
that the p; are known to both players. The player who makes the prediction wins if his
prediction is true and loses if it is false. If neither player makes a prediction, the game is
called a tie. We take the payoff from Player I's point of view to be one for a win, zero for
a loss and w for a tie. Here it is not assumed that w < 1, since the problem is non-trivial
even if w > 1.

Sakaguchi (1984) solved this problem with p; = 1/i for ¢ = 1,...,n and p; = 0 for
i > n as in the secretary problem, and with w = 1/2.

This is a multistage game of perfect information. If it were a finite game, it could
be solved by backward induction. However, a simple observation changes it into a finite
horizon problem. Let V; denote the probability that no successes occur after stage j,

o0

V= H (1—ps) (39)

i=j+1

for all 7. Note that the V; are nondecreasing and converging to 1 as j — oco. If X; =1
and V; > 1/2, then it is clearly optimal for Player I to stop at j, since his probability of
win is at least 1/2, and if he passes, his opponent can stop and win with probability at
least 1/2. Let

m = min{y : V; > 1/2}. (40)

We know what will happen if play reaches stage m: Player I will stop at the next success
if any, since if he doesn’t, Player IT will. If stage m is reached, then Player I's expected
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payoff is

Uy, = P(exactly one success from m on) + wP(no successes from m on)

_ i [E(l = 20)| Vi Vot = Vi {:m AL (41)

I
3

where r; = p;/(1 — p;) is the odds ratio at stage j. Thus the game may be reformulated
to be: The payoff to Player I is V; if he stops at 7, and 1 — Vj if Player II stops at j for
g =1,...,m — 1. If neither player has stopped by stage m, the payoff to Player I is U,,.

8.1 A more general model. Although one could solve this game by the method
used by Sakaguchi, it is simpler and gives more insight to consider this game in a slightly
generalized form as a multistage game of perfect information. Let 0 < V} < V5, < --- <
Vin—1 < 1/2 be given numbers, and let py,...,pm—1 be given probabilities, not necessarily
related to the V; by (39). Also, let U, be an arbitrary number, not necessarily given by
(41). The game at stage k for &k = 1,...,m — 1, denoted by G}, may be described as
follows. The first move is a chance move with success probability py. If failure occurs, the
game moves on the game Gj41. If success occurs, Then Player I may stop and receive Vi,
or continue. If Player I continues, Player II may stop giving Player I the payoff 1 — Vj, or
continue. If Player II continues, the game moves on to the game Gj41. The game G, is
simply the game that gives Player I the amount U,,. In symbols,

stop  wait

t Vi Vi
Gk:pk{so.p k k ]+(1—pk)Gk+1 fork=1,2,...,m—1 (42)
wait \ 1 = Vi Graq

Gm = (Un).

The value of G, is U,, obviously. Let U denote the value of Gi. The U may be
found by backward recursion using a well-known technique in multistage games. (See for
example Ferguson (2005), Part IT Chapter 6.2.)

_ Vi Vi _
Uk = py Val (1 v Uk+1> + (1 = pi)Uk+1 (43)

fork=m—1,m —2,...,1. The game inside the Val sign always has a saddle point, and
since Vi < 1 — Vi for k < m, we have

Val ( i Vi Uppr Vi < Uppr < 1— Vi (44)

1— Vi if1—Vi < Upsr.

Vk fOI‘ Uk—H S Vk
1-V; Uk+1> B {
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Therefore,
PV + (1 — pr) Uk for Upy1 < Vi
Up = { Upps V< Uppr < 1— Vi (45)
pe(l=Vi)+ (1 —pi)Usyr 1 —=Vi < Upyr.

Note that if U,, < 1/2, the U are constant or increasing as k gets smaller. Similarly
for Uy, > 1/2, the U}, are constant or decreasing as k gets smaller. This implies that there
are two types of optimal behavior depending U,,. If U,, > 1/2, Player I should continue
up to m and Player II may stop before. If U,, < 1/2, Player I should continue up to m
and Player I may stop before.

Let ky = max{k : Uy > Vi_1} and ke = max{k : Uy, <1 —Vj_1}.

Theorem 3. The value of the game is Uy. If U, < 1/2, it is optimal for Player I to stop
at the first success from stage ky on and for Player II to continue up to m. If U,, > 1/2,
it is optimal for Player II to stop at the first success from stage ko on and for Player I to
continue up to m.

8.2 Application to Sakaguchi’s Game. Now consider the generalization of the
game of Sakaguchi in which Vj is related to the p; by (39), m is given by (40), and U,, is
given by (41). We treat the two cases of Theorem 3 separately.

Suppose first that U,, < 1/2. Player II’s optimal behavior is clear: stop at the first
success from stage m on if given the chance. Player I will certainly stop from stage m on,
and he may stop earlier. He will stop at stage m — 1 if Vj,,_y > U,,, which reduces to
Zjim r; < 1—w. This is the behavior entailed in the optimal stopping rule N* of (2).

We may compute Up,—1 from (41) and the top line of (45) as

Um—l:pm—lvm—1+(1_pm—1)Um: m— l[pm 1+ 1_pm 1 |:ZT‘]+UJ}
j=m

(46)

o0

] 3 e

j=m—1

Therefore at stage m — 2, Player I will stop if > = r; < 1—w. Note that (46) is just

j=m—1
(41) with m replaced by m — 1. Therefore, this analysis continues by induction down to
stage
k1 = min{k : Z ri <1-—w}.
j=k+1

This is the same cutoff point used by the stopping rule N* of (2)! However in this game,
Player I should stop from stage m on even if Z;im—}-l r; > 1—w. Thus, Player I's optimal
strategy is to stop at the first success from stage min{ky, m} on, while Player II’s optimal
strategy is to stop at the first success from stage m on.

13



Now, suppose U, > 1/2. (The problem treated by Sakaguchi, where p; = 1/i for
i <n,p;i=0fori>nandw = 1/2, falls in this case.) The computation corresponding
to (46) is only slightly more complex. Let 6 denote Zjim rj + w, so that Uy, = Vi,—16.
From (45), we evaluate Up,—1 assuming 1 — Vi, < Us,.

Um—l = pm—l(]- - Vm—l) + (]- - pm—l)vm—le

1
= Dm—1Vin— —1 Vin—20
Pm—1 1(Vm—1 )+ 2 (47)
1
= V—a|rm— —1 i,
a[r 1(Vm_1 )+ 0]

This analysis may be repeated to find Uy for K < m —1 as long as 1 — Vi, < Ugyy. We find

1 1
U =Vio — = 1)+t —1)+4]. 48
= Vel = 1)+ (o — 1)+ (43)
This stops at
m—1 oo
. 1
1=k+1 j=m

In this case, Player IT’s optimal strategy is to stop at the first success from stage min{kq, m}
on, while Player I's optimal strategy is to stop at the first success from stage m on.

Acknowledgement

I would like to thank the editors and publishers for the creation of this volume. It
has been my privilege to have been a close personal friend and colleague of Thomas Bruss
since his visit to the United States in the late 1980’s. T am pleased to be a contributor to
this volume. This paper was written in 2008. The only changes made were minor editing
corrections and the addition of references to related work published since that time.

References.

K. Ano, H. Kakinuma and N. Mioshi (2010) “Odds theorem with multiple selection
chances”, .J. Appl. Prob. 47, 1093-1104.

F. Thomas Bruss (2000) “Sum the Odds to One and Stop”, Ann. Prob. 28, 1384-1391.

F. Thomas Bruss (2003) “A Note on Bounds for the Odds-Theorem of Optimal Stopping”,
Ann. Prob. 32, 1859-1861.

F. Thomas Bruss and D. Paindaveine (2000) “Stopping on Last Successes in Sequences of
Independent Trials”, .J. Appl. Prob. 37, 389-399.

F. Thomas Bruss and Guy Louchard (2009) “The Odds Algorithm Based on Sequential
Updating and its Performance.” Adv. Appl. Prob. 41, No.1, 131-154.

14



F. Thomas Bruss and Marc Yor (2012) “Stochastic Processes with Proportional Increments
and the Last-Arrival Problem” Stoch. Proc. and Th. Applic., 122, pp 3239-3261.

Y. S. Chow, H. Robbins and D. Siegmund (1971) Great Expectations: The Theory of
Optimal Stopping, Houghton Mifflin Co., Boston.

Rémi Dendievel (2013), “New developments of the odds-theorem”, Math. Scientist 38,
11-123.

E. B. Dynkin (1963) “The Optimum Choice of the Instant for Stopping a Markov Process”,
Soviet Math. 4, 627-629.

Thomas Ferguson (2005) Game Theory, Electronic Text at
http://www.math.ucla.edu/~tom/Game_Theory/Contents.html

Thomas Ferguson (2006) Optimal Stopping and Applications, Electronic Text at
http://www.math.ucla.edu/~tom /Stopping/Contents.html

J. P. Gilbert and F. Mosteller (1966) “Recognizing the maximum of a sequence”, .J. Amer.
Statist. Assoc. 61 35-73.

T. P. Hill and U. Krengel (1992) “A prophet inequality related to the secretary prob-
lem”, in Strategies for Sequential Search and Selection in Real Time, Contemporary
Mathematics 125, F.T. Bruss, T.S. Ferguson and S.M. Samuels eds., 209-215.

S. R. Hsiau and J. R. Yang (2000) “A Natural Variation of the Standard Secretary Prob-
lem”, Statistica Sinica, 10, 634-646.

S. R. Hsiau and J. R. Yang (2002) “Selecting the last success in Markov-dependent trials”,
J. Appl. Prob., 39, 271-281.

Minoru Sakaguchi (1984) “Bilateral sequential games related to the no-information secre-
tary problem”, Math. Japonica 29, 961-973.

Mitsushi Tamaki, Qi Wang and Aiko Kurushima (2008) An Extension of the Sum-the-
Odds Theorem to Stopping Problems on the Bernoulli Trials of Random Length,
Preprint.

Mitsushi Tamaki (2010) “Sum the multiplicative odds to one and stop”, .J. Appl. Prob.,
47, 761-777.

Thomas S. Ferguson
Department of Mathematics
University of California at Los Angeles

Los Angeles, CA 90095

tomOmath.ucla.edu

15



