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1. Introduction. The joint asymptotic distribution of the sample mean and the
sample median was found by Laplace almost 200 years ago. See Stigler [2] for an interesting
historical discussion of this achievement. For a review of other work on this problem, see
the Problem Corner of the IMS Bulletin, (1992) Vol. 21, p. 234, and the Problem Corner
of Chance magazine, (2000) Vol. 13 No. 3, p. 51. In this talk, I derive the asymptotic joint
distribution of the sample mean and an arbitrary quantile. It is hoped that the proof may
be new and of interest.

2. The Main Theorem. Let X1, . . . ,Xn be i.i.d. with distribution function F (x),
density f(x), mean µ and finite variance σ2. Let 0 < p < 1 and let xp denote the pth
quantile of F , so that F (xp) = p. Assume that the density f(x) is continuous and positive
at xp. Let Xn = (1/n)

∑n
1 Xi be the sample mean, and let Yn = X(n:�np�) denote the

sample pth quantile. As is well-known,

√
n(Xn − µ) L−→ N (0, σ2) (1)

and √
n(Yn − xp) L−→ N (0, p(1 − p)/f(xp)2). (2)

In this note, we find the joint asymptotic distribution of Xn and Yn. As is expected,
this asymptotic distribution is bivariate normal, so the main interest is in the asymptotic
covariance of Xn and Yn. This asymptotic covariance is easy to describe in terms of the
minimum pth deviation, a measure of spread for use in estimating the pth quantile. Let

Lp(x− a) =
{
p(x− a) if x > a
(1 − p)(a − x) if x ≤ a. (3)

The pth deviation about the point a, E(Lp(X − a)), is minimized by the choice a = xp.
Therefore, we define the minimum pth deviation to be

τ (p) = ELp(X − xp). (4)

When p = 1/2, the corresponding quantile is the median which we denote here by ν.
In this case, the minimum pth deviation is half the mean deviation about the median,
τ (.5) = (1/2)E(|X − ν|).

Theorem. Under the assumptions of the first paragraph, we have

√
n(

(
Xn

Yn

)
−

(
µ
xp

)
) L−→ N (

(
0
0

)
,

(
σ2 τ (p)/f(xp)

τ (p)/f(xp) p(1 − p)/f(xp)2

)
). (5)
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3. Mean and Median. In the application of the main theorem to the asymptotic
distribution of the mean and median, we find

√
n(

(
Xn

Yn

)
−

(
µ
ν

)
) L−→ N (

(
0
0

)
,

(
σ2 E|X − ν|/(2f(ν))

E|X − ν|/(2f(ν)) 1/(2f(ν))2

)
). (6)

What linear combination of sample mean and median has smallest mean squared
error? Let µ and ν denote the mean and median of the distribution, and let d = ν − µ.
We consider unbiased estimates of the form ν̂ = αXn + (1−α)mn + d. Let σ2

x, σxy and σ2
y

denote the asymptotic variances and covariance of Xn and Yn. The asymptotic distribution
of

√
n(ν̂ − ν) is N (0, v2), where

v2 = α2σ2
x + 2σxy + (1 − α)2σ2

y .

The choice of α that minimizes this quantity is

α =
σ2

y − σxy

σ2
x − 2σxy + σ2

y

=
1
4
− f(ν)τ

f(ν)2σ2 − 2f(ν)τ + 1
4

.

When 4f(ν)τ = 1, then α = 0 and we use the median only to estimate ν. When
σ2f(ν) = τ , then α = 1 and we use the mean only.

4. Examples. (1) The standard normal:
(

1 1
1 π/2

)
. The sample mean has smaller

variance. In fact, since the sample mean is a sufficient statistic for the mean of the distri-
bution, no further reduction of the variance can be obtained by considering also the sample
median.

(2) The logistic:
(
π2/3 4 log 2

4 log 2 4

)
. Again the mean has smaller asymptotic variance.

But here some asymptotic improvement can be obtained by considering also the sample
median. The linear combination of the form αXn +(1−α)Yn with the smallest asymptotic
variance occurs at α = (1 − log 2)/(1 − 2 log 2 + π2/12) = .7035.

(3) The uniform on (0, 1):
(

1/12 1/8
1/8 1/4

)
. Again the sample mean has smaller vari-

ance. The optimal linear combination is (3/2)Xn − (1/2)Yn, with minimum variance 1/16.
Notice an interesting feature. If we first learn the mean, then after learning the median,
the estimate does not move toward the median, but rather in the opposite direction. This
example was also worked out by Samuel-Cahn [1].

(4) The double exponential:
(

2 1
1 1

)
. Here the sample median has smaller asymptotic

variance. The maximum likelihood estimate is the sample median, and it is efficient, so
that no linear combination involving the sample mean can improve on it.

2



(5) As an example of a distribution with differing mean and median, consider the
extreme value distribution, with density f(x|θ) = exp{−e−(x−θ) − (x− θ)}. The mean of
the distribution is µ = θ + γ, where γ = 0.5772 . . . is Euler’s constant. The median of
the distribution is ν = θ − log log 2 = θ + 0.3665 . . .. We have σ2

x = π2/6 = 1.6449 . . .,
E|X − ν| = 0.5466 . . ., f(ν|θ) = 0.3466, from which we have the asymptotic covariance
matrix, (

1.645 0.789
0.789 2.081

)

The asymptotically best linear combination of the mean and median to estimate θ is then
θ̂ = α(Xn − γ) + (1 − α)(Yn + log log 2), where α = .601 . . ..

5. Proof. Let Zi be i.i.d. exponential random variables with mean 1, and let
Sn = Z1 + · · · + Zn for all n. For fixed n let

Uj = Sj/Sn+1. (7)

Then (U1, . . . , Un) has the same distribution as the order statistics of a sample of size n
from the uniform distribution on [0, 1]. Let F (x) be the distribution function of interest,
and let g(x) = F−1(x) be the inverse function, so that (g(U1), . . . , g(Un)) are distributed
as the order statistics of a sample of size n from F . Then the sample pth quantile and the
sample mean are

Yn = g(U�np�) and Xn =
1
n

n∑
1

g(Uj) (8)

We are interested in the joint asymptotic distribution of these two quantities.

Expand the first about p:

Yn = g(p) + g′(p)(U�np� − p) + higher order terms (9)

and expand the jth term of the second about j/(n+ 1):

Xn =
1
n

n∑
1

(
g(

j

n+ 1
) + g′(

j

n+ 1
)(Uj −

j

n+ 1
) + higher order terms

)
(10)

The higher order terms become negligible even when multiplied by
√
n. Let µn = (1/n)∑n

1 g(j/(n+ 1)). We are to find the joint asymptotic distribution of

√
n(Yn − g(p)) ∼

√
ng′(p)(

S�np�
Sn+1

− p)

=
√
ng′(p)

(1 − p)(S�np� − np) − p(Sn+1 − S�np� − n(1 − p))
Sn+1

(11)
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and

√
n(Xn − µn) ∼ 1√

n

n∑
j=1

g′(
j

n+ 1
)(
Sj

Sn+1
− j

n+ 1
)

=
1√
n

n∑
j=1

g′(
j

n+ 1
)
(n+ 1 − j)(Sj − j) − j(Sn+1 − Sj − (n + 1 − j))

(n+ 1)Sn+1

(12)
Since Sn+1/n

a.s.−→ 1 as n→ ∞, we may replace the Sn+1 in the denominators of (11) and
(12) by n without changing the limiting distributions.

Now define Wn(t) to be Wn(i/(n + 1)) = (Si − i)/
√
n+ 1 for i = 0, 1, . . . , n + 1

with linear interpolation between the points. Then by Donsker’s Theorem, Wn
L−→ W in

C([0, 1]) (the space of continuous functions on [0, 1] with sup-norm topology), whereW (t)
is Brownian motion. The variables of interest now become

√
n(Yn − g(p)) ∼ g′(p)

[
(1 − p)Wn(

�np
n+ 1

) − p(Wn(1) −Wn(
�np
n+ 1

))
]

∼ g′(p) [(1 − p)Wn(p) − p(Wn(1) −Wn(p))]
(13)

and

√
n(Xn − µn) ∼

n∑
j=1

g′(
j

n+ 1
)
(n+ 1 − j)Wn( j

n+1
) − j(Wn(1) −Wn( j

n+1
))

n(n+ 1)

∼
∫ 1

0

g′(t)[(1 − t)Wn(t) − t(Wn(1) −Wn(t))] dt

(14)

Now since the maps are continuous in the uniform topology, we conclude

√
n(Yn − g(p)) L−→ g′(p)(W (p) − pW (1)) (15)

and
√
n(Xn − µn) L−→

∫ 1

0

g′(t)(W (t) − tW (1))dt. (16)

as n → ∞. Then the Cramér-Wold device shows that the limiting distribution is jointly
normal. There remains for us to calculate the covariance since we already know what the
variances must be. Since EW (s)W (t) = s ∧ t,

Cov(g′(p)(W (p) − pW (1)),
∫ 1

0

g′(t)(W (t) − tW (1))dt

= g′(p)
∫ 1

0

g′(t)E(W (p) − pW (1))(W (t) − tW (1))dt

= g′(p)
∫ 1

0

g′(t)(p ∧ t− pt)dt

(17)
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To simplfy this, note first that g(p) = F−1(p) implies that g′(p) = 1/f(xp). Also,

∫ 1

0

g′(t)(p ∧ t− pt)dt =
∫ 1

0

(p ∧ t− pt)dg(t)

=
∫ p

0

(1 − p)t dg(t) +
∫ 1

p

p(1 − t)dg(t)

= −(1 − p)
∫ p

0

(g(t) − g(p))dt + p
∫ 1

p

(g(t) − g(p))dt

= p
∫ ∞

xp

(x− xp)dF (x) − (1 − p)
∫ xp

−∞
(x− xp)dF (x)

= τ (p)

(18)

so (17) reduces to τ (p)/f(xp) as claimed.

One other thing may be checked. Namely that µn = (1/n)
∑n

1 g(j/(n + 1)) →∫ 1

0 g(t)dt =
∫ ∞
−∞ xdF (x) = µ. Furthermore, the convergence is rapid enough (

√
n(µn −

µ) → 0) so that we may replace µn by µ in (16).

Thanks are due to Rao Chaganti for pointing out the references.
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